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I. The setup of chemical vapor deposition method 

Figure S1 ǀ Schematic of the chemical vapor deposition method setup

PbBr2 and CsBr powders (with 1:2 stoichiometry) were placed in the heating center of a 

quartz tube reactor. The silicon (Si) substrate was positioned at a distance of 12 cm away 

from the powder sources in the downstream. Ar as the carrier gas is flowing from the 

upstream to the downstream. At a sample temperature of 575 ºC, we observed the reliable 

growth of CsPbBr3 perovskite micro-crystals with a special shape of microspheres.
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II. SEM images of sphere samples with different titled angle

Figure S2 ǀ SEM images of three sphere samples with different titled angle. The error bar is 1 
μm.
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III. Estimation of exciton binding energy

The exciton binding energy can be fitted using equations, 1-2 , 
𝐼(𝑇) = 𝑅[1 ‒ 𝑒𝑥𝑝( ‒ 𝐸𝑏

𝑘𝐵𝑇)] + 𝑐
where I(T) is the integrated PL intensity at a specific temperature T. Therefore, temperature-

dependent steady-state PL spectroscopy is conducted on individual CsPbBr3 microsphere in a 

backscattering configuration with an excitation laser of 405 nm. The temperature is varied 

from 77 K to 300 K. The integrated PL intensity versus 1/T of four samples are plotted in 

Figure S3 (solid black dots), showing the exciton binding energy from 65 ~ 86 meV. These 

values are much higher than the thermal disturbance at room temperature (KT~ 26 meV).

Figure S3 ǀ The integrated PL intensity of four samples as a function of 1/T. The 
experimental data are well fitted.
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IV. The power dependent PL

Figure S4 ǀ (a) PL spectroscopy of CsPbBr3 microsphere at room temperature with different 
laser power from 21 μW to 220 μW. (b) PL intensity as a function laser power in a log-log 
plot. The red line is a power-law fit I=Pk. Linear fitting of these plots gives a slope of 1.11 ± 
0.03, confirming exciton recombination process in these microspheres.
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V. Temperature-dependent Raman spectra

To confirm the exciton-phonon coupling in sphere microcavities, Raman measurement is 

executed using 633 nm laser as the excitation source (Figure S5). As the CsPbBr3 

microsphere is heated from 103 K to 303 K, the splitting peaks near 70 cm-1 of the Raman 

spectra are undistinguishable by degrees.

Figure S5 ǀ Raman spectra of a typical CsPbBr3 sphere at different temperatures from 103 to 
303 K, showing the Raman shift as the temperature changes.
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VI. The anharmonic model

In the anharmonic model, the variation of phonon frequency  and width  can be 𝜔(𝑇) Γ(𝑇)

described by an anharmonic expression:

   (S1) ω(T) = ω0 + Δ(T)

   (S2)
Δ(T) = A{1 +

2

ex - 1} + B{1 +
3

ey - 1
+

3

(ey - 1)2}
for temperature dependence of wave number at 76 cm-1, and 

   (S3)
Γ(T) = C{1 +

2

ex - 1} + D{1 +
3

ey - 1
+

3

(ey - 1)2}
for temperature dependence of line-width at 76 cm-1, where

   (6)
x =

ℏω0
2KBT

   (7)
y =

ℏω0
3KBT

 is the characteristic frequency of the mode; A, B, C and D are constants.ω0
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VII. Time-resolved PL spectroscopy and fitting 

Figure S6 TRPL decay curves of CsPbBr3 spheres with different temperatures from 77 K to 
298 K monitored around 530 nm with excitation at 400 nm (76 MHz, 120 fs).

The PL decay curve in Figure S6 can be well fitted by multi-exponential decay equation 

as follows:

   (S4)I(t) = I0 + A1 ∙ e
- τ1 t

+ A2 ∙ e
- τ2 t

   (S5)
Τ =

A1 * τ2
1 + A2 * τ2

2
A1 * τ1 + A2 * τ2

where I, T, , Ai are the integrated PL intensity, average lifetime, lifetime and pre-exponential τi

factors of CsPbBr3 spheres at different temperature. The fitting results are shown in Table S1.

Table S1 The fitting results by multi-exponential decay equation
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VIII. The setup of optical measurement system

Figure S7 The setup of optical measurement system. For steady-state PL spectroscopy, a CW 
laser (wavelength: 405 nm) is focused onto an individual CsPbBr3 sphere using an Olympus 
BX51 microscope equipped with a 100× objective (NA = 0.95). PL emission signal was 
collected by the same microscope objective in a backscattering configuration and analyzed by 
Princeton Instrument spectrometer (PI Acton, Spectra Pro 2500i) equipped with a TE-cooled 
charge coupled detector camera (PIXIS-400B). The PL image is recorded by a cool-snap 
color camera equipped on Olympus BX51 microscope. The PL lifetime measurements were 
conducted by a time-corrected single photon counting technique (TCSPC) with ultimate 
temporal resolution of ~40 ps. The excitation laser source is a frequency-doubled mode-
locked Ti-sapphire oscillator laser (800 nm, repetition rate 76 MHz, pulse length 120 fs). For 
lasing measurements, the laser source is generated by frequency doubled from a Coherent 
Astrella regenerative amplifier (80 fs, 1 kHz, 800 nm) that was seeded by a Coherent Vitara-s 
oscillator (35 fs, 80 MHz).
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