Highly Sensitive Glutathione Assay and Intracellular Imaging with Functionalized Semiconductor Quantum Dots

Junlin Sun, Feng Liu, Wenqian Yu, Qunying Jiang, Jialing Hu, Yahua Liu, Fuan Wang, Xiaoqing Liu*

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China

* To whom correspondence should be addressed. E-mail: xiaoqingliu@whu.edu.cn.
Table of Contents

Fig. S1 Hydrodynamic diameter and zeta potential of QD@SiO$_2$ and QD@SiO$_2$-MnO$_2$ S2
Fig. S2 EDS spectrum of QD@SiO$_2$-MnO$_2$.. S3
Fig. S3 Excitation, emission spectra of QD and QD@SiO$_2$... S4
Fig. S4 Relative quantum yields of QD and QD@SiO$_2$.. S5
Fig. S5 UV-vis absorption spectra of KMnO$_4$ and MnO$_2$... S6
Fig. S6 Absorption spectra and zeta potential of QD@SiO$_2$ subjected to different concentrations of KMnO$_4$... S7
Fig. S7 Fluorescent quenching of the QD@SiO$_2$ by different preparation routes....................... S8
Fig. S8 Fluorescence restoration ability of the nanoprobe toward GSH .. S9
Fig. S9 Kinetics of GSH sensing by optical spectra and ICP-MS ... S10
Fig. S10 TEM images of QD@SiO$_2$-MnO$_2$ in the absence and presence of GSH S11
Fig. S11 Confocal images of nanoprobes or cells for control ... S12
Fig. S12 Variation of intracellular GSH upon NEM treatment ... S13
Fig. S13 Intracellular imaging of GSH variation in MCF-7 cells ... S14
Table S1 Performance of different methods for fluorescent assay of GSH S15
Reference.. S16
Fig. S1 Hydrodynamic diameter of QD@SiO$_2$ (A) and QD@SiO$_2$-MnO$_2$ (B) in water and DMEM. Zeta potential of QD@SiO$_2$ (C) and QD@SiO$_2$-MnO$_2$ (D). Inset: corresponding photograph of the particle solution.
Fig. S2 Energy-dispersive X-ray spectroscope (EDS) spectrum of QD@SiO$_2$-MnO$_2$.
Supporting Information

Fig. S3 Fluorescence excitation (red line) and emission (black line) spectra of QD in toluene (A) and QD@SiO$_2$ in water (B).
Fig. S4 Calculation of relative photoluminescence quantum yields of QD and QD@SiO2 using standard quinine sulfate (QS). Corresponding linear equation: $y_{\text{QD}} = 671117.0619x - 1263.91762$, $R^2 = 0.9986$; $y_{\text{QD@SiO2}} = 321620.65124x - 3917.02263$, $R^2 = 0.9998$; $y_{\text{QS}} = 526928.40956x - 6530.24365$, $R^2 = 0.9938$.
Fig. S5 UV-vis absorption spectra of aqueous solutions of KMnO$_4$ and MnO$_2$ nanosheets.
Supporting Information

Fig. S6 UV-vis absorption spectra (A) and zeta potential (B) of QD@SiO$_2$ in the presence of different concentrations of KMnO$_4$ (0, 0.2, 0.4, 0.8, 1.2, 1.6 and 2 mM).
Fig. S7 Fluorescent quenching of the QD@SiO$_2$ by different preparation routes for the nanoprobes. (a) Pristine QD@SiO$_2$. (b) Nanoprobes prepared by physical mixing QD@SiO$_2$ and MnO$_2$. (c) Nanoprobes (QD@SiO$_2$-MnO$_2$) prepared by in-situ growth of MnO$_2$ on the surface of QD@SiO$_2$. The respective concentrations of QD and MnO$_2$ were the same.
Fig. S8 Fluorescence restoration ability of the QD@SiO$_2$-MnO$_2$ toward 500 µM GSH. The nanoprobes were prepared separately using 0.8 and 1.2 mM KMnO$_4$.

Supporting Information
Fig. S9 Dynamic reaction between QD@SiO₂-MnO₂ and 500 μM GSH followed by time-dependent fluorescence restoration (A), absorbance variation (B), and ICP-MS (C).
Fig. S10 TEM images of QD@SiO$_2$-MnO$_2$ in the absence (A) and presence (B) of 500 μM GSH.

Scale bar, 50 nm.
Fig. S11 Confocal images of nanoprobeS or cells. First column: RAW264.7 cells without treatment. Second column: QD@SiO₂-MnO₂ incubated in DMEM without cells for 4 h. Third column: RAW264.7 cells incubated with QD@SiO₂ for 4 h. Scale bar, 7 μm.
Fig. S12 Variation of intracellular GSH in RAW264.7 cells pretreated with NEM (10 μM) for 20 min. The GSH level was measured using Ellman’s reagents.
Fig. S13 Intracellular imaging of GSH variation in MCF-7 cells with different treatments by confocal laser scanning microscopy. (A) Untreated cells in the absence of QD@SiO$_2$-MnO$_2$. (B) Cells incubated with QD@SiO$_2$-MnO$_2$. (C) Cells pretreated with NEM (10 μM) for 20 min followed by incubation with QD@SiO$_2$-MnO$_2$. (D) Cells pretreated with LPA (500 μM) for 24 h followed by incubation with QD@SiO$_2$-MnO$_2$. Scale bar, 12 μm.
Table S1 Comparison of different methods for fluorescent assay of GSH.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Detection limit (μM)</th>
<th>Linear range (μM)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCF-GSH</td>
<td>0.28</td>
<td>/</td>
<td>1</td>
</tr>
<tr>
<td>AuNC</td>
<td>0.2</td>
<td>150-1200</td>
<td>2</td>
</tr>
<tr>
<td>g-C₃N₄–MnO₂ nanocomposite</td>
<td>0.2</td>
<td>/</td>
<td>3</td>
</tr>
<tr>
<td>Eu(DPA)₃@Lap-Tris/Cu²⁺ system</td>
<td>0.162</td>
<td>0.5-100</td>
<td>4</td>
</tr>
<tr>
<td>Bis-Pyrene-Cu(II)</td>
<td>0.16</td>
<td>/</td>
<td>5</td>
</tr>
<tr>
<td>Iridium(III) complex</td>
<td>0.13</td>
<td>1-200</td>
<td>6</td>
</tr>
<tr>
<td>Au-MOF</td>
<td>0.1</td>
<td>0-10000</td>
<td>7</td>
</tr>
<tr>
<td>CQDs-AuNPs</td>
<td>0.05</td>
<td>0.1-0.6</td>
<td>8</td>
</tr>
<tr>
<td>QD@SiO₂-MnO₂</td>
<td>0.01</td>
<td>0.01-120</td>
<td>This work</td>
</tr>
</tbody>
</table>
References

