Supporting Information

The Luminescence Property of CsPb$_x$M$_{1-x}$Br$_3$ Perovskite Nanocrystals Transformed from Cs$_4$PbBr$_6$ Mediated by Various Divalent Bromide MBr$_2$ Salts

Zhaohui Shen,ab Bo Qiao,ab Zheng Xu,ab Dandan Song,ab Di Gao,ab Pengjie Song,ab Jingyue Caoab and Qiongyu Baiab, Yuanchun Wuc, Suling Zhao,*ab

aKey Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing 100044, China
bInstitute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
cShenzhen China Star Optoelectronics Technology Co., Ltd., Shenzhen, 518132, China

PL decay lifetime

The PL decay curve were fitted with a triexponential function

$$A(t) = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right) + A_3 \exp\left(-\frac{t}{\tau_3}\right)$$

where A_1, A_2, and A_3 are time independent coefficient constants, and t is time. τ_1, τ_2, and τ_3 are decay lifetimes because of the intrinsic exciton relaxation, the interaction between excitons and phonons, and the interaction between excitons and defects, respectively.

τ_{ave}, the average lifetime, can be calculated with a function

$$\tau_{\text{ave}} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3}$$

Figure S2. PL decay curves of CsPb$_x$Zn$_{1-x}$Br$_3$ NCs synthesized at different temperature.
Table 1. Fluorescence lifetimes of CsPb$_x$Zn$_{1-x}$Br$_3$ NCs.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>70°C</th>
<th>80°C</th>
<th>90°C</th>
<th>100°C</th>
<th>130°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Time(ns)</td>
<td>5.04</td>
<td>4.79</td>
<td>4.33</td>
<td>4.31</td>
<td>4.70</td>
</tr>
</tbody>
</table>

Figure S2. XPS spectra for CsPb$_x$Eu$_{1-x}$Br$_3$ NCs. (a–d) The high-resolution XPS analysis corresponding to Cs 3d, Pb 4f, Eu 3d and Br 3d, respectively.

Figure S3. XPS spectra for CsPb$_x$Zn$_{1-x}$Br$_3$ NCs. (a–d) The high-resolution XPS analysis corresponding to Cs 3d, Pb 4f, Zn 2p and Br 3d, respectively.
Figure S4. XPS spectra for CsPb$_x$Mn$_{1-x}$Br$_3$ NCs. (a–d) The high-resolution XPS analysis corresponding to Cs 3d, Pb 4f, Mn 2p and Br 3d, respectively.

Figure S5. EDS element mapping images of CsPb$_x$Zn$_{1-x}$Br$_3$ NCs. (a–e) Images of Cs, Pb, Zn and Br.

(a) (b) (c) (d) (e)
Figure S6. EDS element mapping images of CsPb$_{x}$Mn$_{1-x}$Br$_3$ NCs. (a-e) images of Cs, Pb, Mn and Br.

Figure S7. EDS element mapping images of CsPb$_{x}$Eu$_{1-x}$Br$_3$ NCs. (a-e) images of Cs, Pb, Eu and Br.
Table S2. Substitution rates for lead ions in CsPb$_{1-x}$M$_x$Br$_3$ NCs

<table>
<thead>
<tr>
<th></th>
<th>Cs+ (%)</th>
<th>Pb$^{2+}$ (%)</th>
<th>M$^{2+}$ (%)</th>
<th>Br (%)</th>
<th>M$^{2+}$/ (Pb$^{2+}$+M$^{2+}$) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsPb$_{1-x}$Mn$_x$Br$_3$</td>
<td>1.99</td>
<td>0.51</td>
<td>1.57</td>
<td>8.9</td>
<td>75.48</td>
</tr>
<tr>
<td>CsPb$_{1-x}$Eu$_x$Br$_3$</td>
<td>12.09</td>
<td>6.61</td>
<td>7.04</td>
<td>7.16</td>
<td>51.58</td>
</tr>
<tr>
<td>CsPb$_{1-x}$Zn$_x$Br$_3$</td>
<td>3.17</td>
<td>0.45</td>
<td>1.94</td>
<td>12.57</td>
<td>81.17</td>
</tr>
</tbody>
</table>