Supporting Information

Low-temperature Processed Inorganic Perovskites for Flexible Detectors with Broadband Photoresponse

Ting Zhanga, Feng Wanga, Peng Zhanga, Yafei Wanga, Hao Chena, Jian Lia, Jiang Wub,c, Li Chena*, Zhi David Chena,d, Shibin Lia*

aSchool of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China

bDepartment of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK

cInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China

dDepartment of Electrical & Computer Engineering and Center for Nanoscale Science & Engineering, University of Kentucky, Lexington, Kentucky 40506, USA

Corresponding Author:

Email: shibinli@uestc.edu.cn; chen_li@uestc.edu.cn
Figure S1 CsPbBr$_3$ perovskite films obtained with various duration for the first step annealing (a, 5 min; b, 8 min; c, 12 min) and immersion in IPA (d, 2 min; e, 4 min; f, 6 min).

Figure S2 AFM maps of as-prepared CsPbBr$_3$ films with (a) or without (b) SE treatment.
Figure S3. EDS spectra of a SE treated CsPbBr$_3$ film. It suggests that the stoichiometric ratio of inorganic perovskite is ~1:1:3 for Cs:Pb:Br.

Figure S4. Tack plot curve of the inorganic perovskite film. The optical bandgap of CsPbBr$_3$ was measured to be ~2.28eV.
Figure S5. (a) I-V (b) and I-t characteristics of the flexible CsPbBr$_3$ photodetector without SE treatment.

Figure S6. A reproducible I-t curve of the device based on treated CsPbBr$_3$ film measured under periodic light on/off.
Figure S7. The photocurrent and on/off ratio curves of the treated CsPbBr$_3$ flexible PD.

Figure S8. Responsivity and specific detectivity of the treated CsPbBr$_3$ flexible PD.
Figure S9 (a) EQE and (b) spectral response of the treated CsPbBr$_3$ flexible PDs under different biases.

Figure S10. I-t curve of the device bended at 1.02 mm. Even at a deflected condition, the photocurrent response also can be measured with overload bending state.
Figure S11. Comparison of environmental stability of the device kept in air for two months with 35–45% relative humidity. (a) The reproducible I-t curves of the devices measured for periodic light on/off. (b) Absorption spectra of the devices in fresh and kept in air for two months. The inset digital photos show that the CsPbBr$_3$ perovskite is stable even after two months.
Table S1 Performance comparison of our device with other reported CsPbBr$_3$ photodetectors

<table>
<thead>
<tr>
<th>Device structure</th>
<th>Material structure</th>
<th>substrate</th>
<th>Detectivity (Jones)</th>
<th>Rise/ decay time (ms)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au/CsPbBr$_3$/Au</td>
<td>Single crystal</td>
<td>None/rigid</td>
<td>10^{11}</td>
<td>90.7/57</td>
<td>[1]</td>
</tr>
<tr>
<td>Pt/CsPbBr$_3$/Au</td>
<td>Single crystal</td>
<td>None/rigid</td>
<td>10^{11}</td>
<td>230/60</td>
<td>[2]</td>
</tr>
<tr>
<td>Au/CsPbBr$_3$/Au</td>
<td>Thin film</td>
<td>PET/flexible</td>
<td>10^{10}</td>
<td>260/280</td>
<td>This work</td>
</tr>
</tbody>
</table>

Reference

