Ideal optical contrast for 2D materials observation using bi-layer antireflection absorbing substrates

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Kevin Jaouen,1 Renaud Cornut,1,* Dominique Ausserrè,2 Stéphane Campidelli,1 Vincent Derycke1,*

1 LICSEN, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France. E-mail: renaud.cornut@cea.fr; vincent.derycke@cea.fr

2 Institut des Molécules et Matériaux du Mans (UMR 6283), Université du Maine, Avenue Olivier Messiaen, F-72000 Le Mans, France
Figure S1. (a,b,c) BALM images acquired after the end of the organic layer deposition with the diaphragm fully open. From left to right, the light intensity used during the light-induced deposition of dinitrobiphenyl molecules decreases. The substrate was moved by ~20µm at approximately mid-experiment along the arrow direction. (d) Reflected light as a function of time in the center of the image during the deposition (gray-scale data from the green channel averaged on a 100x100 pixels area), (e) AFM height profiles at the end of the experiments.
Figure S2. MALDI-TOF mass spectrum of the material resulting from the light induced deposition of 4-nitrobenzenediazonium tetrafluoroborate on gold surface. It shows that the film is constituted of dinitrobiphenyl molecules.
Figure S3. Simple numerical simulation of the reflected light intensity (at $\lambda = 550$ nm and normal incidence) on a 3nm-gold/second-layer stack as a function of the second layer thickness and for different values of n_{layer2} (1.4, 1.5, 1.6 and 1.7) for (a) $k_{\text{layer2}} = 0$, (b) $k_{\text{layer2}} = 0.1$, (c) $k_{\text{layer2}} = 0.2$ and (d) $k_{\text{layer2}} = 0.3$.
Figure S4 BALM images of GO flakes on gold extracted from a movie (movie_1 in SI) recorded during the controlled deposition of an organic layer. (a,b,c) RGB color images at \(t = 0 \) s, \(t = 50 \) s, and \(t = 156 \) s respectively. (d,e,f) gray-scale image of the green channel and example of a height profile at a gold/GO step from which the contrast \(C = (I_{GO} - I_{gold})/(I_{GO} + I_{gold}) \) is extracted. (g,h,i) Same images with the 0-255 gray scale simply rescaled to 0-128, 0-96, 0-64 for the 3 images respectively. As shown on the height profiles, this simply compensates for the progressive darkening of the images as the reflection decreases, but does not impact contrast values.