Supporting Information

Bichen Li,a Zhihui Chen,b Hongyan Yao,a Xin Guan,a Zhimeng Yu,a Furkan Halis Isikgor,a Hikmet Coskun,a Qinghua Xu,b and Jianyong Ouyang *a

aDepartment of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574

bDepartment of Chemistry, National University of Singapore, Science Drive 2, 117543

* Corresponding Author.

E-mail: mseoj@nus.edu.sg

Contents

Figure S1-S9

Table S1
Figure S1. Photos of perovskite precursor solutions with (a) 0 vol%, (b) 10 vol%, (c) 20 vol%, (d) 30 vol% and (e) 40% CB.

Figure S2. Photovoltaic performance of PSCs with the MAPbI$_3$ films deposited from precursor solutions added with different percentages of CB. (a) J_{sc}, (b) V_{oc}, (c) FF and (d) PCEs of PSCs obtained from 15 devices for each condition.
Figure S3. Grain sizes of perovskite thin films on PTAA deposited from precursor solutions added with different percentages of CB. SEM images of films deposited from solutions with (a) 10 vol% and (b) 30 vol% CB. The scale bar is 1 µm. Corresponding size distributions of grains in perovskite films added with CB of (c) 10 vol% and (d) 30 vol%.
Figure S4. AFM images of perovskite films deposited from precursor solutions added with CB of (a) 0 vol%, (b) 5 vol%, (c) 10 vol%, (d) 20 vol%, and (e) 30 vol%. The scale bar was 1 µm.
Figure S5. XRD patterns of (a) thermal-annealed perovskite films prepared from the precursor solutions added with different percentages of CB, (b) characteristic (110) peak of the thermal-annealed films, and (c) as-fabricated perovskite films before thermal annealing.
Figure S6. Time-resolved PL curves of perovskites films fabricated from precursor solutions with different percentages of CB. There was no CB in the precursor solution for the control sample.

Figure S7. UV-visible absorption spectra of different co-solvents without perovskite precursors.
Figure S8. The LaMer model describing the concentration change of the precursor solution as a function of time at a constant evaporation rate of the solvents.

Figure S9. SEM images of MAPbI$_3$ films on PTAA. The MAPbI$_3$ films were prepared (a) without CB in precursor solution and anti-solvent dripping during spin coating, (b) with 20% CB in precursor solution and without anti-solvent dripping during spin coating, (c) without CB
in precursor solution but with anti-solvent dripping during spin coating, and (d) with 20% CB in precursor solution and with anti-solvent dripping during spin coating.

Supplementary Tables

Table S1. Parameters of fitting the time resolved photoluminescence decay curves of perovskite films fabricated from precursor solutions with different percentages of CB.

<table>
<thead>
<tr>
<th>CB vol%</th>
<th>A₁</th>
<th>τ₁ (ns)</th>
<th>A₂</th>
<th>τ₂ (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.80</td>
<td>11.0</td>
<td>0.20</td>
<td>112.6</td>
</tr>
<tr>
<td>5</td>
<td>0.76</td>
<td>14.3</td>
<td>0.24</td>
<td>113.6</td>
</tr>
<tr>
<td>10</td>
<td>0.77</td>
<td>19.3</td>
<td>0.23</td>
<td>125.5</td>
</tr>
<tr>
<td>20</td>
<td>0.72</td>
<td>18.4</td>
<td>0.27</td>
<td>140.4</td>
</tr>
<tr>
<td>30</td>
<td>0.70</td>
<td>14.2</td>
<td>0.30</td>
<td>81.3</td>
</tr>
</tbody>
</table>