Supporting information

Enhancement of thermal energy transport across the graphene/h-BN heterostructure interface

Feng Liu\textsuperscript{a,b}, Rui Zou\textsuperscript{a,b,*}, Ning Hu\textsuperscript{a,c,*}, Huiming Ning\textsuperscript{a,*}, Cheng Yan\textsuperscript{d}, Yaolu Liu\textsuperscript{a}, Liangke Wu\textsuperscript{a}, Fuhao Mo\textsuperscript{e}, Shaoyun Fu\textsuperscript{a}

\textsuperscript{a}College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
\textsuperscript{b}Postdoctoral Station of Mechanics, Chongqing University, Chongqing, 400044, China
\textsuperscript{c}Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing, 400044, China
\textsuperscript{d}School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
\textsuperscript{e}College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China

Corresponding Authors

*E-mail: ruizou@cqu.edu.cn (R.Z.).
*E-mail: ninghu@cqu.edu.cn (N.H.).
*E-mail: ninghuiming@cqu.edu.cn (H.N.).
Figure S1. Distribution of N doping. The B, C, and N atoms are represented in pink, cyan, and blue color, respectively.
Figure S2. Different atomic row thicknesses for the zigzag and armchair interface topography: (a) and (e) single-row, (b) and (f) two-row, (c) and (g) three-row, (d) and (h) four-row.