Supporting Information

Direct construction of alkenyl iodides via indium-catalyzed iodoalkylation of alkynes with alcohols and aqueous HI

Chao Wu, Zheng Wang, Zhan Hu, Fei Zeng, Xing-Yu Zhang, Zhong Cao, Zilong Tang, Wei-Min He* and Xin-Hua Xu

Hunan Provincial Engineering Research Center for Ginkgo biloba, Hunan University of Science and Engineering, Yongzhou 425100, China
State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China
Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China

List of Contents

1. General Remarks...S2

2. General Experimental Procedure...S2

3. Spectral Data for All the Compounds...S3-7

4. Stereochemical elucidation ..S7

5. Copies of 1H NMR and 13C NMR Spectra for all the compounds ..S8-26
1. General Remarks

All experiments were carried out under an inert atmosphere of nitrogen. All commercially available reagent grade chemicals were purchased from Aldrich, Acros and Alfa Aesar Chemical Company and used as received without further purification unless otherwise stated. All solvents were used after drying and distilling process. NMR spectra were recorded in CDCl$_3$ on a Bruker Avance 600 spectrometer with TMS as internal standard (1H: 600 MHz, 13C: 150 MHz) at room temperature, and the chemical shifts (δ) were expressed in ppm and J values were given in Hz. The following abbreviations are used to indicate the multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m) or broad (br). Mass analyses and HRMS were obtained on an Agilent 5973N MSD mass spectrometer and a Waters Micromass GCT Premier mass spectrometer by the EI method, respectively. Column chromatography was performed on silica gel (100-200 mesh).

2. General Experimental Procedure

To a stirred solution of InI$_3$ (2.5 mol%), alcohol 1 (0.5 mmol), and 47% aqueous HI (1.5 equiv) in DBE (1.0 mL) was added alkyne 2 (0.75 mmol). The mixture was heated at 60°C and stirred for 6 h. Upon completion of the reaction, the mixture was filtered through a short column of silica gel and washed with ethyl acetate, and the solvents were removed by rotary evaporation to provide raw product. Then the raw product was purified on silica gel using petroleum ether as the eluent to afford desired product 4.
3. Spectral Data for All the Compounds

\((3\text{-iodoprop-2-ene-1,1,3-triyl})\text{tribenzene (4a)}\) \(E:Z\) (90:10);
\(^1H\) NMR (CDCl\(_3\), 600 MHz, ppm): (\(E\))\(-4a\): \(\delta=7.11-7.52\) (m, 15H), \(6.96\) (d, \(J = 10.7\) Hz, 1H), \(4.68\) (d, \(J = 10.7\) Hz, 1H);
(\(Z\))\(-4a\): \(\delta=7.11-7.52\) (m, 15H), \(6.38\) (d, \(J = 9.2\) Hz, 1H), \(5.20\) (d, \(J = 9.2\) Hz, 1H). \(^{13}C\) NMR (CDCl\(_3\), 150 MHz, ppm): \(\delta=141.1, 142.9, 141.6, 128.7, 128.5, 128.4, 128.2, 126.7, 95.9, 52.8\); MS (EI): \(m/z=396\); HRMS (EI) calcd for C\(_{21}\)H\(_{17}\)I 396.0375; found 396.0376.

\((1\text{-iodo-3-p-tolylprop-1-ene-1,3-diyl})\text{dibenzenes (4b)}\) \(E:Z\) (91:9);
\(^1H\) NMR (CDCl\(_3\), 600 MHz, ppm): (\(E\))\(-4b\): \(\delta=6.99-7.50\) (m, 14 H), \(6.93\) (d, \(J = 10.8\) Hz, 1H), \(4.63\) (d, \(J = 10.8\) Hz, 1H), \(2.33\) (s, 3H); (\(Z\))\(-4b\): \(\delta=6.99-7.50\) (m, 14 H), \(6.35\) (d, \(J = 9.2\) Hz, 1H), \(5.14\) (d, \(J = 9.2\) Hz, 1H), \(2.34\) (s, 3H). \(^{13}C\) NMR (CDCl\(_3\), 150 MHz, ppm): \(\delta=144.2, 143.0, 141.5, 139.8, 136.2, 129.4, 128.6, 128.5, 128.3, 128.1, 128.0, 126.5, 95.6, 52.4, 21.0\); MS (EI): \(m/z=410\); HRMS (EI) calcd for C\(_{22}\)H\(_{19}\)I 410.0532; found 410.0535.

\((3\text{-}(4\text{-chlorophenyl})\text{-1-iodoprop-1-ene-1,3-diyl})\text{dibenzenes (4c)}\) \(E:Z\) (85:15);
\(^1H\) NMR (CDCl\(_3\), 600 MHz, ppm): (\(E\))\(-4c\): \(\delta=7.04-7.51\) (m, 14H), \(6.91\) (d, \(J = 10.7\) Hz, 1H), \(4.65\) (d, \(J = 10.8\) Hz, 1H); (\(Z\))\(-4c\): \(\delta=7.04-7.51\) (m, 14H), \(6.33\) (d, \(J = 9.2\) Hz, 1H), \(5.17\) (d, \(J = 9.2\) Hz, 1H). \(^{13}C\) NMR (CDCl\(_3\), 150 MHz, ppm): \(\delta=143.4, 142.3, 141.3, 129.8, 128.5, 128.3, 128.2, 128.1, 128.0, 126.8, 96.2, 52.1\); MS (EI): \(m/z=430\); HRMS (EI) calcd for C\(_{21}\)H\(_{16}\)ClI 429.9985; found 429.9987.

\((5\text{-}(2\text{-iodo-2-phenylvinyl})\text{-10,11-dihydro-5H-dibenz}[a,d][7]\text{annulenes (4d)}\) \(E:Z\) (92:8);
\(^1H\) NMR (CDCl\(_3\), 600 MHz, ppm): (\(E\))\(-4d\): \(\delta=6.95-7.47\) (m, 14H), \(4.79\) (d, \(J = 10.1\) Hz, 1H), \(3.31\) (m, 2H), \(3.00\) (m, 2H); (\(Z\))\(-4d\): \(\delta=6.95-7.47\) (m, 13H), \(6.66\) (d, \(J = 9.1\) Hz, 1H), \(5.28\) (d, \(J = 9.1\) Hz, 1H), \(3.34\) (m, 2H), \(3.11\) (m, 2H). \(^{13}C\) NMR (CDCl\(_3\), 150 MHz, ppm): \(\delta=144.0, 142.1, 139.9, 139.2, 130.5, 129.2, 128.5, 128.4, 127.0, 126.3, 95.4, 53.5, 33.2\); MS (EI): \(m/z=422\); HRMS (EI) calcd for C\(_{23}\)H\(_{16}\)Cl 422.0532; found 422.0526.

\((1\text{-iodobut-1-ene-1,3-diyl})\text{dibenzenes (4e)}\) \(E:Z\) (89:11);
\(^1H\) NMR (CDCl\(_3\), 600 MHz, ppm): (\(E\))\(-4e\): \(\delta=7.16-7.48\) (m, 10H), \(6.65\) (d, \(J = 10.5\) Hz, 1H), \(3.49\) (m, 1H), \(1.35\) (d, \(J = 6.9\) Hz, 3H); (\(Z\))\(-4e\): \(\delta=7.16-7.48\) (m, 10H), \(6.01\) (d, \(J = 9.1\) Hz, 1H), \(3.95\) (m, 1H), \(1.50\) (d, \(J = 7.0\) Hz, 3H). \(^{13}C\) NMR (CDCl\(_3\), 150 MHz, ppm): \(\delta=147.2, 144.5, 143.1, 142.0, 128.7, 128.5, 128.4, 128.2, 126.9, 126.5, 94.3, 42.0, 21.7\); MS (EI): \(m/z=334\); HRMS (EI) calcd for C\(_{16}\)H\(_{15}\)I 334.0219; found 334.0222.
1-(4-iodo-4-phenylbut-3-en-2-yl)-4-methylbenzene (4f) E:Z (88:12); 1H NMR (CDCl$_3$, 600 MHz, ppm): (E)-4f: δ= 7.09-7.49 (m, 9H), 6.67 (d, J = 10.6 Hz, 1H), 3.50 (m, 1H), 2.38 (s, 3H), 1.36 (d, J = 6.9 Hz, 3H); (Z)-4f: δ= 7.09-7.49 (m, 9H), 6.03 (d, J = 9.0 Hz, 1H), 3.96 (m, 1H), 2.39 (s, 3H), 1.51 (d, J = 7.0 Hz, 3H). 13C NMR (CDCl$_3$, 150 MHz, ppm): δ= 147.5, 142.0, 141.5, 136.0, 129.4, 128.8, 128.5, 128.4, 128.2, 126.7, 94.1, 41.6, 21.8, 21.1; MS (El): m/z=348; HRMS (El) calcd for C$_{17}$H$_{17}$I 348.0375; found 348.0376.

1-chloro-4-(4-iodo-4-phenylbut-3-en-2-yl)benzene (4g) E:Z (88:12); 1H NMR (CDCl$_3$, 600 MHz, ppm): (E)-4g: δ= 7.05-7.43 (m, 9H), 6.56 (d, J = 10.4 Hz, 1H), 3.44 (m, 1H), 1.31 (d, J = 7.0 Hz, 3H); (Z)-4g: δ= 7.05-7.43 (m, 9H), 5.94 (d, J = 8.9 Hz, 1H), 3.91 (m, 1H), 1.46 (d, J = 7.0 Hz, 3H). 13C NMR (CDCl$_3$, 150 MHz, ppm): δ= 146.5, 142.9, 141.8, 132.1, 128.8, 128.4, 128.3, 128.1, 94.7, 41.3, 21.6; MS (El): m/z=368; HRMS (El) calcd for C$_{16}$H$_{14}$ClI 367.9829; found 367.9834.

(1-iodohept-1-ene-1,3-diyl)dibenzene (4h) E:Z (87:13); 1H NMR (CDCl$_3$, 600 MHz, ppm): (E)-4h: δ= 7.11-7.47 (m, 10H), 6.65 (d, J = 10.7 Hz, 1H), 3.28 (m, 1H), 1.67 (m, 2H), 1.11-1.23 (m, 4H), 0.85 (t, J = 7.3 Hz, 3H); (Z)-4h: δ= 7.11-7.47 (m, 10H), 6.02 (d, J = 9.2 Hz, 1H), 3.79 (m, 1H), 1.87 (m, 2H), 1.28 (m, 4H), 0.94 (t, J = 7.5 Hz, 3H). 13C NMR (CDCl$_3$, 150 MHz, ppm): δ= 146.5, 143.7, 142.0, 128.7, 128.5, 128.2, 128.1, 127.2, 126.4, 94.6, 48.0, 36.3, 29.4, 22.5, 13.9; MS (El): m/z=376; HRMS (El) calcd for C$_{19}$H$_{21}$I 376.0688; found 376.0683.

(2-(cyclohex-2-enyl)-1-iodovinyl)benzene (4i) E:Z (82:18); 1H NMR (CDCl$_3$, 600 MHz, ppm): (E)-4i: δ= 7.24-7.53 (m, 5H), 6.36 (d, J = 10.5 Hz, 1H), 5.75 (m, 1H), 5.45 (d, J = 10.0Hz, 1H), 2.82 (brs, 1H), 1.96 (m, 2H), 1.72 (m, 2H), 1.43 (m, 2H); (Z)-3i: δ= 7.24-7.53 (m, 5H), 5.82 (m, 1H), 5.76 (d, J = 9.2 Hz, 1H), 5.61 (m, 1H), 3.22 (brs, 1H), 2.04 (m, 2H), 1.78 (m, 2H), 1.46-1.53 (m, 2H). 13C NMR (CDCl$_3$, 150 MHz, ppm): δ= 146.8, 142.0, 128.53, 128.51, 128.4, 128.3, 128.2, 128.1, 94.6, 38.7, 28.8, 24.7, 20.6; MS (El): m/z= 310; HRMS (El) calcd for C$_{14}$H$_{15}$I 310.0219; found 310.0222.

(4E)-1-iodopenta-1,4-diene-1,3,5-triyl)tribenzene (4j) E:Z (84:16); 1H NMR (CDCl$_3$, 600 MHz, ppm): (1E)-4j: δ= 7.20-7.51 (m, 15H), 6.74 (d, J = 10.3 Hz, 1H), 6.44 (d, J = 15.9 Hz, 1H), 6.31 (dd, J = 15.9, 6.5 Hz, 1H), 4.23 (dd, J = 10.1, 6.6 Hz, 1H); (1Z)-4j: δ=
7.20-7.51 (m, 15H), 6.62 (d, \(J = 15.9 \) Hz, 1H), 6.45 (dd, \(J = 15.8, 6.6 \) Hz, 1H), 6.16 (d, \(J = 9.0 \) Hz, 1H), 4.75 (m, 1H). \(^{13}\)C NMR (CDCl\(_3\), 150 MHz, ppm): \(\delta = 143.1, 141.9, 141.7, 137.1, 130.9, 130.8, 128.9, 128.6, 128.5, 128.4, 127.7, 127.6, 126.9, 126.4, 95.8, 50.6; \)

MS (EI): \(m/z = 422 \); HRMS (EI) calcd for C\(_{23}\)H\(_{19}\)I 422.0532; found 422.0528.

(3-iodo-3-o-tolylprop-2-ene-1,1-diyl)dibenzene (4l) \(E:Z \) (90:10); \(^1\)H NMR (CDCl\(_3\), 600 MHz, ppm): \((E)-4l: \delta = 7.08-7.38 \) (m, 14H), 7.02 (d, \(J = 10.6 \) Hz, 1H), 4.43 (d, \(J = 10.6 \) Hz, 1H), 2.18 (s, 3H); \((Z)-4l: \delta = 7.08-7.38 \) (m, 14H), 6.10 (d, \(J = 9.2 \) Hz, 1H), 5.19 (d, \(J = 9.2 \) Hz, 1H), 2.29 (s, 3H). \(^{13}\)C NMR (CDCl\(_3\), 150 MHz, ppm): \(\delta = 144.5, 142.9, 142.5, 140.6, 135.8, 130.6, 129.4, 128.7, 128.6, 128.4, 128.20, 128.15, 128.1, 126.64, 126.60, 126.0, 95.5, 52.9, 19.5; \)

MS (EI): \(m/z = 410 \); HRMS (EI) calcd for C\(_{22}\)H\(_{19}\)I 410.0532; found 410.0527.

(3-iodo-3-m-tolylprop-2-ene-1,1-diyl)dibenzene (4m) \(E:Z \) (87:13); \(^1\)H NMR (CDCl\(_3\), 600 MHz, ppm): \((E)-4m: \delta = 7.11-7.37 \) (m, 14H), 6.98 (d, \(J = 10.6 \) Hz, 1H), 4.71 (d, \(J = 10.6 \) Hz, 1H), 2.35 (s, 3H); \((Z)-4m: \delta = 7.11-7.37 \) (m, 14H), 6.39 (d, \(J = 9.2 \) Hz, 1H), 5.22 (d, \(J = 9.2 \) Hz, 1H), 2.39 (s, 3H). \(^{13}\)C NMR (CDCl\(_3\), 150 MHz, ppm): \(\delta = 143.8, 142.9, 141.4, 138.0, 129.2, 129.1, 128.7, 128.5, 128.2, 126.6, 125.5, 96.2, 52.8, 21.4; \)

MS (EI): \(m/z = 410 \); HRMS (EI) calcd for C\(_{22}\)H\(_{19}\)I 410.0532; found 410.0536.

(3-(4-fluorophenyl)-3-iodoprop-2-ene-1,1-diyl)dibenzene (4n) \(E:Z \) (90:10); \(^1\)H NMR (CDCl\(_3\), 600 MHz, ppm): \((E)-4n: \delta = 7.00-7.48 \) (m, 14H), 6.97 (d, \(J = 10.7 \) Hz, 1H), 4.63 (d, \(J = 10.7 \) Hz, 1H), 2.35 (s, 3H); \((Z)-4n: \delta = 7.00-7.48 \) (m, 14H), 6.32 (d, \(J = 9.2 \) Hz, 1H), 5.16 (d, \(J = 9.2 \) Hz, 1H). \(^{13}\)C NMR (CDCl\(_3\), 150 MHz, ppm): \(\delta = 163.2, 161.5, 144.6, 142.7, 142.5, 137.6, 130.4, 128.8, 128.1, 126.7, 115.5, 115.3, 115.2, 94.4, 52.8; \)

MS (EI): \(m/z = 414 \); HRMS (EI) calcd for C\(_{21}\)H\(_{16}\)IF 414.0281; found 414.0279.

(3-(3-chlorophenyl)-3-iodoprop-2-ene-1,1-diyl)dibenzene (4o) \(E:Z \) (87:13); \(^1\)H NMR (CDCl\(_3\), 600 MHz, ppm): \((E)-4o: \delta = 7.13-7.51 \) (m, 14H), 7.02 (d, \(J = 10.7 \) Hz, 1H), 4.67 (d, \(J = 10.7 \) Hz, 1H); \((Z)-4o: \delta = 7.13-7.51 \) (m, 14H), 6.43 (d, \(J = 9.2 \) Hz, 1H), 5.21 (d, \(J = 9.2 \) Hz, 1H). \(^{13}\)C NMR (CDCl\(_3\), 150 MHz, ppm): \(\delta = 145.0, 143.1, 142.5, 134.1, 129.6, 128.8, 128.6, 128.4, 128.1, 127.3, 126.9, 126.8, 126.6, 93.3, 52.9; \)

MS (EI): \(m/z = 430 \); HRMS (EI) calcd for C\(_{21}\)H\(_{16}\)ClI 429.9985; found 429.9988.

3-(1-iodo-3,3-diphenylprop-1-enyl)thiophene (4p) \(E:Z \) (76:24); \(^1\)H NMR (CDCl\(_3\), 600
MHz, ppm): (E)-4p: δ = 7.11-7.44 (m, 13H), 6.95 (d, J = 10.4 Hz, 1H), 4.86 (d, J = 10.4 Hz, 1H); (Z)-4p: δ = 7.11-7.44 (m, 13H), 6.50 (d, J = 9.2 Hz, 1H), 5.20 (d, J = 9.2 Hz, 1H).

\(^{13}\)C NMR (CDCl\textsubscript{3}, 150 MHz, ppm): δ = 144.7, 143.0, 141.3, 128.8, 128.7, 128.5, 128.2, 126.7, 125.4, 124.0, 89.5, 53.2; MS (EI): m/z= 402; HRMS (EI) calcd for C\textsubscript{19}H\textsubscript{15}IS 401.9933; found 401.9936.

(3-cyclohexenyl-3-iodoprop-2-ene-1,1-diyl)dibenzene (4q) E:Z (85:15); \(^{1}H\) NMR (CDCl\textsubscript{3}, 600 MHz, ppm): (E)-4q: δ = 7.15-7.33 (m, 10H), 6.61 (d, J = 10.3 Hz, 1H), 5.77 (s, 1H), 4.95 (d, J = 10.3 Hz, 1H), 2.18 (m, 2H), 2.02 (m, 2H), 1.72 (m, 2H), 1.61 (m, 2H); (Z)-4q: δ = 7.15-7.33 (m, 10H), 6.18 (s, 1H), 6.17 (d, J = 9.2 Hz, 1H), 5.24 (d, J = 9.2 Hz, 1H), 2.18 (m, 2H), 2.02 (m, 2H), 1.72 (m, 2H), 1.61 (m, 2H).

\(^{13}\)C NMR (CDCl\textsubscript{3}, 150 MHz, ppm): δ = 143.4, 141.7, 138.4, 128.6, 128.5, 128.2, 127.0, 126.5, 103.0, 52.7, 28.0, 25.2, 22.4, 21.9; MS (EI): m/z= 400; HRMS (EI) calcd for C\textsubscript{21}H\textsubscript{21}I 400.0688; found 400.0689.

(3-iodo-2-methyl-3-phenylprop-2-ene-1,1-diyl)dibenzene (4r) E:Z (78:22); \(^{1}H\) NMR (CDCl\textsubscript{3}, 600 MHz, ppm): (E)-4r: δ = 7.11-7.54 (m, 15H), 5.30 (s, 1H), 2.08 (s, 3H); (Z)-4r: δ = 7.11-7.54 (m, 15H), 4.51 (s, 1H), 1.98 (s, 3H). \(^{13}\)C NMR (CDCl\textsubscript{3}, 150 MHz, ppm): δ = 144.9, 143.8, 142.1, 129.4, 129.1, 128.9, 128.7, 128.2, 127.0, 126.9, 100.7, 53.6, 27.1; MS (EI): m/z= 410; HRMS (EI) calcd for C\textsubscript{22}H\textsubscript{19}I 410.0532; found 410.0535.

(2-(iodo(phenyl)methylene)butane-1,1-diyl)dibenzene (4s) E:Z (90:10); \(^{1}H\) NMR (CDCl\textsubscript{3}, 600 MHz, ppm): (E)-4s: δ = 7.07-7.47 (m, 15H), 5.23 (s, 1H), 2.49 (q, J = 7.4 Hz, 2H), 0.51 (t, J = 7.4 Hz, 3H); (Z)-4s: δ = 7.07-7.47 (m, 15H), 4.63 (s, 1H), 2.17 (q, J = 7.4 Hz, 2H), 0.20 (t, J = 7.6 Hz, 3H). \(^{13}\)C NMR (CDCl\textsubscript{3}, 150 MHz, ppm): δ = 148.4, 144.7, 141.9, 129.3, 128.8, 128.3, 128.2, 128.1, 127.7, 126.5, 99.3, 53.2, 32.4, 12.6; MS (EI): m/z=424; HRMS (EI) calcd for C\textsubscript{23}H\textsubscript{21}I 424.0688; found 424.0684.

Oxybis(methanetriyl)tetrabenzen 1H NMR (CDCl\textsubscript{3}, 600 MHz, ppm): δ = 7.35 (d, J = 7.7 Hz, 8H), 7.30 (t, J = 7.7 Hz, 8H), 7.24 (t, J = 7.4 Hz, 4H), 5.40 (s, 2H); \(^{13}\)C NMR (CDCl\textsubscript{3}, 150 MHz, ppm): δ = 142.2, 128.4, 127.4, 127.3, 80.0; HRMS (ESI) calcd for C\textsubscript{26}H\textsubscript{22}NaO 373.1563. Found: 373.1554.
4. Stereochemical elucidation

![Chemical Structure](image)

Fig. 1

The configuration of alkenyl iodides (the products of the reactions of aromatic terminal alkynes with alcohols) can be readily determined using 1H NMR since the coupling constants between vinyl protons and methine protons in the E-isomer and Z-isomer are quite different. Generally, the coupling constant in the E-isomer is near 10.6 Hz, while in the Z-isomer is near 9.2 Hz.\(^1\)\(^-\)\(^5\)

References:

5. Copies of 1H NMR and 13C NMR Spectra for all the compounds
Copies of 1H NMR and 13C NMR Spectra for the Intermediate 4a