Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Direct synthesis of 2-methylpyridines via I_2 -triggered [3 + 2 + 1] annulation of aryl methyl ketoxime acetates with triethylamine as the carbon source

Qinghe Gao,*a Huijuan Yan,a Manman Wu,a Jiajia Sun,a Xiqing Yan,a and Anxin Wub

^aSchool of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.

^bKey Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

E-mail: gao_qinghe@xxmu.edu.cn

lable of Contents	page
1. The cross-coupling reaction and the spectrogram of HRMS	S2
2. The ¹³ C-labeling and D-labeling experiments and the spectrogram	S2-S4
3. The HSQC and HMBC of 3d	S5
4. ¹ H and ¹³ C NMR spectra of compounds 3	S6-S25

1. The cross-coupling reaction and the spectrogram of HRMS

In order to further confirm our proposed mechanism, we investigated the cross-coupling reaction between two representative substrates 4-methylacetophenone oxime acetate (1a) and acetophenone oxime acetate (1f) under standard conditions. Fortunately, all the products were successfully identified by HRMS analysis of the crude reaction extract.

2. The ¹³C-labeling and D-labeling experiments and the spectrogram

We further experimented to develop a better understanding of the reaction mechanism by performing 13 C-labeling and D-labeling experiments under the optimized conditions using acetophenone- β , β , β - d_3 oxime acetate and acetophenone- β - 13 C oxime acetate, respectively, as substrates. The corresponding desired products **3f** and **3f**- d_2 were obtained in 82% and 79% yields, respectively (Scheme 4a and 4b). These experimental results strongly suggested that methyl ketone *O*-acetyloximes provided four carbons to form the pyridine ring. Then, the speculation that the α -C of TEA was integrated into the final pyridines has been demonstrated when TEA- d_{15} was used in this reaction system (Scheme 4c). Both of this deuterated experimental evidences are in agreement with the observation of internal D/H exchange in the 2-methylpyridines.

3. The HSQC and HMBC of 3d

4. ¹H and ¹³C NMR spectra of compounds 3

77. 32 77. 00 77. 00 76. 68 $\begin{cases} 63.55 \\ 63.47 \end{cases}$

7159. 68 7159. 65 7158. 43 7157. 15 -148. 92

7132.29 7130.92 7128.14 7118.54 7114.89 7114.81

1.5

0.5

-0.5

10.5

9.5

