Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting information

Glycosyl nitrates in synthesis: streamlined access to glucopyranose building blocks

differentiated at C-2

Tinghua Wang, Swati S. Nigudkar, Jagodige P. Yasomanee, Nigam P. Rath, Keith J. Stine, and

Alexei V. Demchenko*

Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University

Boulevard, St. Louis, Missouri 63121, USA

Contents

NMR data X-Ray data S2-S17 S18-S48

S3

(¹H NMR 300 MHz, CDCl₃)

(¹³C NMR 75 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

(¹³C NMR 75 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

(¹³C NMR 75 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

(¹³C NMR 75 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

(¹H NMR 300 MHz, CDCl₃)

(¹³C NMR 75 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

(¹H NMR 300 MHz, CDCl₃)

(¹³C NMR 75 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

NMR Spectra: a) White Precipitate from CAN Reaction with thioglycoside **6**; b) White Precipitate from CAN Reaction of Ethanethiol; c) Pure Ethanethiol

NMR Spectra: a) ¹H Spectrum of White Precipitate from CAN Reaction of SPh Glycoside 11; b)

(¹³C NMR 75 MHz, CDCl₃)

<u>X-Ray data</u>

Compound 10

Table 1S. Crystal data and structure refinement	for 10 .	
Identification code	a16316t5/lt/smart/TB4-P132-2/	/
Empirical formula	Ce H ₁₆ N ₇ O ₁₉	
Formula weight	558.32	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 11.0806(4) Å	<i>α</i> = 90°.
	b = 8.8522(4) Å	β=102.8202(18)°.
	c = 17.7829(6) Å	$\gamma = 90^{\circ}.$
Volume	1700.80(11) Å ³	
Z	4	
Density (calculated)	2.180 Mg/m ³	
Absorption coefficient	2.790 mm ⁻¹	
F(000)	1100	
Crystal size	0.229 x 0.118 x 0.075 mm ³	
Theta range for data collection	2.349 to 36.304°.	
Index ranges	-18≤h≤18, 0≤k≤14, 0≤l≤29	
Reflections collected	27155	
Independent reflections	4419 [R(int) = 0.051]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.438258 and 0.344314	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4419 / 10 / 164	
Goodness-of-fit on F ²	1.161	
Final R indices [I>2sigma(I)]	R1 = 0.0440, wR2 = 0.1119	
R indices (all data)	R1 = 0.0516, wR2 = 0.1151	
Largest diff. peak and hole	1.057 and -1.251 e.Å ⁻³	

	х	У	Z	U(eq)
Ce(1)	5000	5615(1)	7500	9(1)
O(1)	5801(3)	7526(4)	8618(2)	22(1)
O(2)	3918(3)	7975(4)	8006(2)	21(1)
O(3)	4816(10)	9525(9)	8902(6)	24(1)
O(3')	4656(7)	9091(8)	9128(4)	24(1)
O(4)	4126(3)	4155(4)	6180(2)	20(1)
O(5)	5963(3)	5082(4)	6291(2)	23(1)
O(6)	5131(10)	3871(10)	5249(4)	19(2)
O(6')	5288(7)	3272(10)	5427(4)	32(2)
O(9)	7357(2)	5588(3)	7924(2)	14(1)
N(1)	4819(3)	8273(5)	8573(2)	29(1)
N(2)	5108(4)	4242(6)	5921(2)	28(1)
N(3)	5000	2094(4)	7500	17(1)
O(7)	4061(12)	2810(7)	7584(18)	18(1)
O(8)	4770(6)	762(6)	7248(4)	22(1)
O(7')	5929(12)	2812(7)	7395(18)	18(1)
O(1S)	6898(8)	1370(10)	5422(5)	26(2)
N(4)	2620(7)	1748(9)	5552(4)	21(2)
O(1S')	7091(8)	1005(11)	5188(6)	18(2)
N(4')	2922(8)	967(12)	5610(5)	17(2)

Table 2S. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for **10**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Ce(1)-O(9)	2.553(3)	O(1)-Ce(1)-O(5)#1	68.10(11)
Ce(1)-O(9)#1	2.553(3)	O(1)#1-Ce(1)-O(5)#1	127.13(10)
Ce(1)-O(1)	2.611(3)	O(9)-Ce(1)-O(5)	70.58(9)
Ce(1)-O(1)#1	2.611(3)	O(9)#1-Ce(1)-O(5)	109.22(9)
Ce(1)-O(5)#1	2.646(3)	O(1)-Ce(1)-O(5)	127.14(11)
Ce(1)-O(5)	2.646(3)	O(1)#1-Ce(1)-O(5)	68.10(11)
Ce(1)-O(2)#1	2.663(3)	O(5)#1-Ce(1)-O(5)	159.48(17)
Ce(1)-O(2)	2.663(3)	O(9)-Ce(1)-O(2)#1	66.38(9)
Ce(1)-O(4)#1	2.667(3)	O(9)#1-Ce(1)-O(2)#1	114.53(9)
Ce(1)-O(4)	2.667(3)	O(1)-Ce(1)-O(2)#1	69.30(11)
Ce(1)-O(7')	2.708(6)	O(1)#1-Ce(1)-O(2)#1	48.45(9)
Ce(1)-O(7)	2.709(6)	O(5)#1-Ce(1)-O(2)#1	135.01(11)
O(1)-N(1)	1.261(4)	O(5)-Ce(1)-O(2)#1	64.67(11)
O(2)-N(1)	1.278(4)	O(9)-Ce(1)-O(2)	114.53(9)
O(3)-N(1)	1.254(7)	O(9)#1-Ce(1)-O(2)	66.38(9)
O(3')-N(1)	1.269(6)	O(1)-Ce(1)-O(2)	48.45(8)
O(4)-N(2)	1.275(5)	O(1)#1-Ce(1)-O(2)	69.30(11)
O(5)-N(2)	1.268(5)	O(5)#1-Ce(1)-O(2)	64.67(11)
O(6)-N(2)	1.244(6)	O(5)-Ce(1)-O(2)	135.01(11)
O(6')-N(2)	1.274(6)	O(2)#1-Ce(1)-O(2)	76.62(15)
O(9)-H(9A)	0.8857	O(9)-Ce(1)-O(4)#1	65.67(9)
O(9)-H(9B)	0.8860	O(9)#1-Ce(1)-O(4)#1	113.77(9)
N(3)-O(7)	1.255(6)	O(1)-Ce(1)-O(4)#1	69.39(11)
N(3)-O(7')	1.259(6)	O(1)#1-Ce(1)-O(4)#1	168.50(10)
N(3)-O(8)	1.267(5)	O(5)#1-Ce(1)-O(4)#1	48.04(9)
		O(5)-Ce(1)-O(4)#1	119.74(10)
O(9)-Ce(1)-O(9)#1	178.94(13)	O(2)#1-Ce(1)-O(4)#1	125.12(9)
O(9)-Ce(1)-O(1)	68.20(9)	O(2)-Ce(1)-O(4)#1	100.68(10)
O(9)#1-Ce(1)-O(1)	112.54(9)	O(9)-Ce(1)-O(4)	113.77(9)
O(9)-Ce(1)-O(1)#1	112.54(9)	O(9)#1-Ce(1)-O(4)	65.67(9)
O(9)#1-Ce(1)-O(1)#1	68.20(9)	O(1)-Ce(1)-O(4)	168.50(10)
O(1)-Ce(1)-O(1)#1	99.24(15)	O(1)#1-Ce(1)-O(4)	69.39(11)
O(9)-Ce(1)-O(5)#1	109.22(9)	O(5)#1-Ce(1)-O(4)	119.74(10)
O(9)#1-Ce(1)-O(5)#1	70.58(9)	O(5)-Ce(1)-O(4)	48.03(9)

Table 3S. Bond lengths [Å] and angles $[\circ]$ for 10.

O(2)#1-Ce(1)-O(4)	100.68(10)	O(7')-Ce(1)-O(7)	47.22(12)
O(2)-Ce(1)-O(4)	125.12(9)	N(1)-O(1)-Ce(1)	98.6(2)
O(4)#1-Ce(1)-O(4)	122.02(15)	N(1)-O(2)-Ce(1)	95.6(2)
O(9)-Ce(1)-O(7')	68.4(3)	N(2)-O(4)-Ce(1)	96.7(2)
O(9)#1-Ce(1)-O(7')	110.5(3)	N(2)-O(5)-Ce(1)	97.9(2)
O(1)-Ce(1)-O(7')	125.2(6)	Ce(1)-O(9)-H(9A)	110.1
O(1)#1-Ce(1)-O(7')	127.7(7)	Ce(1)-O(9)-H(9B)	110.2
O(5)#1-Ce(1)-O(7')	96.9(5)	H(9A)-O(9)-H(9B)	108.7
O(5)-Ce(1)-O(7')	63.4(5)	O(3)-N(1)-O(1)	121.7(6)
O(2)#1-Ce(1)-O(7')	119.3(3)	O(1)-N(1)-O(3')	121.3(4)
O(2)-Ce(1)-O(7')	161.5(5)	O(3)-N(1)-O(2)	117.9(6)
O(4)#1-Ce(1)-O(7')	63.1(7)	O(1)-N(1)-O(2)	117.0(3)
O(4)-Ce(1)-O(7')	64.2(7)	O(3')-N(1)-O(2)	120.7(4)
O(9)-Ce(1)-O(7)	110.8(3)	O(6)-N(2)-O(5)	118.8(6)
O(9)#1-Ce(1)-O(7)	68.1(3)	O(5)-N(2)-O(6')	122.7(5)
O(1)-Ce(1)-O(7)	128.4(7)	O(6)-N(2)-O(4)	122.1(6)
O(1)#1-Ce(1)-O(7)	124.5(6)	O(5)-N(2)-O(4)	116.6(3)
O(5)#1-Ce(1)-O(7)	64.1(5)	O(6')-N(2)-O(4)	119.0(5)
O(5)-Ce(1)-O(7)	96.4(5)	O(7)-N(3)-O(7')	119.3(4)
O(2)#1-Ce(1)-O(7)	160.9(5)	O(7)-N(3)-O(8)	113.9(7)
O(2)-Ce(1)-O(7)	119.6(2)	O(7')-N(3)-O(8)	121.6(7)
O(4)#1-Ce(1)-O(7)	64.9(7)	N(3)-O(7)-Ce(1)	96.7(4)
O(4)-Ce(1)-O(7)	62.3(7)	N(3)-O(7')-Ce(1)	96.7(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ce(1)	9(1)	7(1)	11(1)	0	2(1)	0
O(1)	12(1)	19(1)	30(2)	-8(1)	-4(1)	6(1)
O(2)	12(1)	18(1)	28(1)	-8(1)	-6(1)	3(1)
O(3)	28(2)	17(3)	23(3)	-6(2)	-3(2)	10(2)
O(3')	28(2)	17(3)	23(3)	-6(2)	-3(2)	10(2)
O(4)	14(1)	26(2)	20(1)	-5(1)	4(1)	-3(1)
O(5)	16(1)	34(2)	18(1)	-5(1)	5(1)	-5(1)
O(6)	38(5)	9(3)	10(3)	2(2)	6(3)	5(3)
O(6')	39(3)	36(4)	24(3)	-15(3)	11(3)	7(3)
O(9)	10(1)	10(1)	22(1)	2(1)	4(1)	0(1)
N(1)	19(2)	25(2)	35(2)	-18(2)	-9(1)	11(1)
N(2)	20(2)	47(3)	18(1)	-15(2)	6(1)	-5(2)
N(3)	20(2)	6(2)	27(2)	0	12(2)	0
O(7)	14(1)	13(1)	28(2)	-6(8)	7(1)	-8(6)
O(8)	28(3)	10(2)	32(3)	-7(2)	13(2)	-7(2)
O(7')	14(1)	13(1)	28(2)	-6(8)	7(1)	-8(6)
O(1S)	33(3)	21(3)	25(3)	-2(3)	6(3)	-4(3)
N(4)	22(3)	15(4)	26(3)	-2(2)	9(2)	-2(3)
O(1S')	16(3)	17(4)	16(4)	0(3)	-3(2)	1(3)
N(4')	15(3)	17(5)	21(3)	1(3)	8(3)	-3(3)

Table 4S.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 10. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	Х	У	Z	U(eq)
	7((2	(17)	7920	21
H(9A) H(9B)	7662	6476 4883	7830 7669	21

Table 5S. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **10**.

Table 6S. Torsion angles $[^{\circ}]$ for **10**.

Ce(1)-O(1)-N(1)-O(3)	-165.5(8)
Ce(1)-O(1)-N(1)-O(3')	161.6(6)
Ce(1)-O(1)-N(1)-O(2)	-6.8(5)
Ce(1)-O(2)-N(1)-O(3)	166.1(8)
Ce(1)-O(2)-N(1)-O(1)	6.6(5)
Ce(1)-O(2)-N(1)-O(3')	-161.9(6)
Ce(1)-O(5)-N(2)-O(6)	171.5(6)
Ce(1)-O(5)-N(2)-O(6')	-155.4(7)
Ce(1)-O(5)-N(2)-O(4)	9.2(5)
Ce(1)-O(4)-N(2)-O(6)	-170.8(7)
Ce(1)-O(4)-N(2)-O(5)	-9.1(5)
Ce(1)-O(4)-N(2)-O(6')	156.1(6)
O(7')-N(3)-O(7)-Ce(1)	-2(3)
O(8)-N(3)-O(7)-Ce(1)	-156.9(4)
O(7)-N(3)-O(7')-Ce(1)	2(3)
O(8)-N(3)-O(7')-Ce(1)	154.9(4)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+3/2

Projection view with 50% probability ellipsoids:

Compound 13

Table 7S.	Crystal data and structure refinem	ent for 13.		
Identification	code	d12917/lt/x8/TB5-P122		
Empirical for	nula	$C_{14} H_{19} N O_{12}$		
Formula weig	ht	393.30		
Temperature		100(2) K		
Wavelength		0.71073 Å		
Crystal system	n	Orthorhombic		
Space group		P212121		
Unit cell dime	ensions	a = 5.5311(7) Å	α= 90°.	
		b = 13.8941(17) Å	β= 90°.	
		c = 23.168(3) Å	$\gamma = 90^{\circ}.$	
Volume		1780.4(4) Å ³		
Ζ		4		
Density (calcu	ulated)	1.467 Mg/m ³		
Absorption co	oefficient	0.131 mm ⁻¹		
F(000)		824		
Crystal size		0.627 x 0.088 x 0.077 mm	3	
Theta range for	or data collection	1.709 to 27.567°.		
Index ranges		-5≤h≤7, -18≤k≤17, -26≤l≤	30	
Reflections co	ollected	22069		
Independent r	eflections	4099 [R(int) = 0.0605]		
Completeness	to theta = 25.242°	100.0 %		
Absorption co	prrection	Semi-empirical from equiv	alents	
Max. and min	. transmission	0.9420 and 0.8656		
Refinement m	nethod	Full-matrix least-squares o	n F ²	
Data / restrain	ts / parameters	4099 / 0 / 248		
Goodness-of-	fit on F ²	1.016		
Final R indice	es [I>2sigma(I)]	R1 = 0.0416, $wR2 = 0.072$	8	
R indices (all	data)	R1 = 0.0715, $wR2 = 0.082$	7	
Absolute strue	cture parameter	0.4(7)		
Largest diff. peak and hole 0.201 and -0.252 e.Å ⁻³				

	х	У	Z	U(eq)
O(1)	7567(3)	4658(1)	4269(1)	17(1)
O(2)	7638(3)	6280(1)	4363(1)	20(1)
O(3)	6410(5)	5992(2)	5281(1)	29(1)
O(4)	9349(4)	6989(2)	5098(1)	37(1)
O(5)	3772(3)	6421(1)	3540(1)	16(1)
O(6)	6617(4)	7394(1)	3157(1)	22(1)
O(7)	3930(3)	4808(1)	2752(1)	14(1)
O(8)	-147(3)	4733(2)	2788(1)	23(1)
O(9)	3729(3)	3068(1)	3407(1)	14(1)
O(10)	6630(3)	2142(1)	3008(1)	19(1)
O(11)	6460(3)	2123(1)	4344(1)	18(1)
O(12)	9908(4)	1299(2)	4469(1)	24(1)
N(1)	7789(5)	6423(2)	4977(1)	25(1)
C(1)	6144(5)	5492(2)	4207(1)	17(1)
C(2)	5459(5)	5640(2)	3578(1)	13(1)
C(3)	4123(5)	4749(2)	3371(1)	13(1)
C(4)	5454(5)	3824(2)	3514(1)	14(1)
C(5)	6196(5)	3803(2)	4149(1)	15(1)
C(6)	7895(5)	2993(2)	4311(1)	20(1)
C(7)	7733(5)	1306(2)	4435(1)	16(1)
C(8)	6105(5)	463(2)	4506(1)	21(1)
C(9)	4566(5)	7268(2)	3315(1)	16(1)
C(10)	2573(5)	7982(2)	3301(1)	21(1)
C(11)	1682(5)	4771(2)	2512(1)	15(1)
C(12)	1884(5)	4777(2)	1872(1)	17(1)
C(13)	4556(5)	2253(2)	3148(1)	15(1)
C(14)	2550(5)	1545(2)	3095(1)	18(1)

Table 8S. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for 13. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.407(3)	C(9)-C(10)	1.484(4)
O(1)-C(5)	1.437(3)	C(10)-H(10A)	0.9800
O(2)-C(1)	1.419(3)	C(10)-H(10B)	0.9800
O(2)-N(1)	1.438(3)	C(10)-H(10C)	0.9800
O(3)-N(1)	1.199(3)	C(11)-C(12)	1.486(4)
O(4)-N(1)	1.200(3)	C(12)-H(12A)	0.9800
O(5)-C(9)	1.360(3)	C(12)-H(12B)	0.9800
O(5)-C(2)	1.433(3)	C(12)-H(12C)	0.9800
O(6)-C(9)	1.204(3)	C(13)-C(14)	1.487(4)
O(7)-C(11)	1.363(3)	C(14)-H(14A)	0.9800
O(7)-C(3)	1.439(3)	C(14)-H(14B)	0.9800
O(8)-C(11)	1.198(3)	C(14)-H(14C)	0.9800
O(9)-C(13)	1.360(3)		
O(9)-C(4)	1.441(3)	C(1)-O(1)-C(5)	111.42(19)
O(10)-C(13)	1.202(3)	C(1)-O(2)-N(1)	113.2(2)
O(11)-C(7)	1.353(3)	C(9)-O(5)-C(2)	117.9(2)
O(11)-C(6)	1.448(3)	C(11)-O(7)-C(3)	118.2(2)
O(12)-C(7)	1.206(3)	C(13)-O(9)-C(4)	117.4(2)
C(1)-C(2)	1.520(4)	C(7)-O(11)-C(6)	115.1(2)
C(1)-H(1)	1.0000	O(3)-N(1)-O(4)	130.3(3)
C(2)-C(3)	1.521(4)	O(3)-N(1)-O(2)	118.4(2)
C(2)-H(2)	1.0000	O(4)-N(1)-O(2)	111.3(3)
C(3)-C(4)	1.517(4)	O(1)-C(1)-O(2)	106.5(2)
C(3)-H(3)	1.0000	O(1)-C(1)-C(2)	110.4(2)
C(4)-C(5)	1.526(4)	O(2)-C(1)-C(2)	106.6(2)
C(4)-H(4)	1.0000	O(1)-C(1)-H(1)	111.1
C(5)-C(6)	1.514(4)	O(2)-C(1)-H(1)	111.1
C(5)-H(5)	1.0000	C(2)-C(1)-H(1)	111.1
C(6)-H(6A)	0.9900	O(5)-C(2)-C(1)	108.9(2)
C(6)-H(6B)	0.9900	O(5)-C(2)-C(3)	106.3(2)
C(7)-C(8)	1.486(4)	C(1)-C(2)-C(3)	108.2(2)
C(8)-H(8A)	0.9800	O(5)-C(2)-H(2)	111.1
C(8)-H(8B)	0.9800	C(1)-C(2)-H(2)	111.1
C(8)-H(8C)	0.9800	C(3)-C(2)-H(2)	111.1

Table 9S. Bond lengths [Å] and angles $[\circ]$ for **13**.

O(7)-C(3)-C(4)	107.7(2)	C(7)-C(8)-H(8C)	109.5
O(7)-C(3)-C(2)	107.7(2)	H(8A)-C(8)-H(8C)	109.5
C(4)-C(3)-C(2)	112.6(2)	H(8B)-C(8)-H(8C)	109.5
O(7)-C(3)-H(3)	109.6	O(6)-C(9)-O(5)	123.1(3)
C(4)-C(3)-H(3)	109.6	O(6)-C(9)-C(10)	126.6(3)
C(2)-C(3)-H(3)	109.6	O(5)-C(9)-C(10)	110.3(2)
O(9)-C(4)-C(3)	104.9(2)	C(9)-C(10)-H(10A)	109.5
O(9)-C(4)-C(5)	109.3(2)	C(9)-C(10)-H(10B)	109.5
C(3)-C(4)-C(5)	111.0(2)	H(10A)-C(10)-H(10B)	109.5
O(9)-C(4)-H(4)	110.5	C(9)-C(10)-H(10C)	109.5
C(3)-C(4)-H(4)	110.5	H(10A)-C(10)-H(10C)	109.5
C(5)-C(4)-H(4)	110.5	H(10B)-C(10)-H(10C)	109.5
O(1)-C(5)-C(6)	103.8(2)	O(8)-C(11)-O(7)	123.6(3)
O(1)-C(5)-C(4)	108.2(2)	O(8)-C(11)-C(12)	126.6(3)
C(6)-C(5)-C(4)	114.9(2)	O(7)-C(11)-C(12)	109.8(2)
O(1)-C(5)-H(5)	109.9	C(11)-C(12)-H(12A)	109.5
C(6)-C(5)-H(5)	109.9	C(11)-C(12)-H(12B)	109.5
C(4)-C(5)-H(5)	109.9	H(12A)-C(12)-H(12B)	109.5
O(11)-C(6)-C(5)	107.0(2)	C(11)-C(12)-H(12C)	109.5
O(11)-C(6)-H(6A)	110.3	H(12A)-C(12)-H(12C)	109.5
C(5)-C(6)-H(6A)	110.3	H(12B)-C(12)-H(12C)	109.5
O(11)-C(6)-H(6B)	110.3	O(10)-C(13)-O(9)	123.1(2)
C(5)-C(6)-H(6B)	110.3	O(10)-C(13)-C(14)	127.2(3)
H(6A)-C(6)-H(6B)	108.6	O(9)-C(13)-C(14)	109.6(2)
O(12)-C(7)-O(11)	122.4(3)	C(13)-C(14)-H(14A)	109.5
O(12)-C(7)-C(8)	126.2(3)	C(13)-C(14)-H(14B)	109.5
O(11)-C(7)-C(8)	111.3(2)	H(14A)-C(14)-H(14B)	109.5
C(7)-C(8)-H(8A)	109.5	C(13)-C(14)-H(14C)	109.5
C(7)-C(8)-H(8B)	109.5	H(14A)-C(14)-H(14C)	109.5
H(8A)-C(8)-H(8B)	109.5	H(14B)-C(14)-H(14C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	20(1)	11(1)	20(1)	0(1)	-6(1)	-1(1)
O(2)	26(1)	15(1)	20(1)	-3(1)	-4(1)	-5(1)
O(3)	44(1)	23(1)	22(1)	-1(1)	-2(1)	-5(1)
O(4)	42(1)	30(1)	40(2)	-10(1)	-16(1)	-13(1)
O(5)	16(1)	10(1)	24(1)	2(1)	2(1)	1(1)
O(6)	18(1)	15(1)	33(1)	4(1)	0(1)	-1(1)
O(7)	13(1)	16(1)	14(1)	2(1)	-1(1)	0(1)
O(8)	13(1)	29(1)	27(1)	2(1)	1(1)	-1(1)
O(9)	12(1)	11(1)	18(1)	-2(1)	0(1)	-1(1)
O(10)	14(1)	17(1)	27(1)	-4(1)	1(1)	2(1)
O(11)	20(1)	12(1)	22(1)	2(1)	-2(1)	0(1)
O(12)	22(1)	21(1)	28(1)	5(1)	-3(1)	2(1)
N(1)	34(2)	16(1)	24(2)	-6(1)	-10(1)	2(1)
C(1)	19(2)	11(1)	21(2)	-1(1)	-1(1)	-3(1)
C(2)	14(1)	9(1)	18(2)	2(1)	0(1)	2(1)
C(3)	14(1)	14(1)	12(2)	1(1)	0(1)	0(1)
C(4)	13(1)	10(1)	19(2)	0(1)	-1(1)	-3(1)
C(5)	17(2)	12(1)	16(2)	-1(1)	-2(1)	-4(1)
C(6)	24(2)	13(1)	22(2)	3(1)	-3(1)	-5(1)
C(7)	23(2)	16(2)	10(2)	-1(1)	-2(1)	2(1)
C(8)	28(2)	13(2)	22(2)	1(1)	3(1)	1(1)
C(9)	19(2)	12(2)	16(2)	0(1)	-3(1)	-2(1)
C(10)	20(2)	14(1)	29(2)	-1(1)	-5(1)	3(1)
C(11)	16(1)	9(1)	21(2)	2(1)	-3(1)	-1(1)
C(12)	18(1)	15(1)	19(2)	1(1)	-2(1)	-1(1)
C(13)	18(2)	12(1)	15(2)	0(1)	-2(1)	2(1)
C(14)	15(1)	16(2)	24(2)	-3(1)	1(1)	-1(1)

Table 10S.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 13.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

	Х	У	Z	U(eq)
H(1)	4674	5460	4457	20
H(2)	6922	5767	3336	16
H(3)	2470	4732	3545	16
H(4)	6902	3747	3260	16
H(5)	4724	3783	4399	18
H(6A)	9179	2923	4016	23
H(6B)	8667	3127	4688	23
H(8A)	4693	538	4254	31
H(8B)	5573	421	4909	31
H(8C)	6975	-126	4401	31
H(10A)	2428	8289	3680	32
H(10B)	1053	7656	3206	32
H(10C)	2921	8472	3009	32
H(12A)	2699	4189	1743	26
H(12B)	2822	5340	1750	26
H(12C)	264	4808	1702	26
H(14A)	1195	1842	2888	27
H(14B)	2018	1348	3481	27
H(14C)	3115	980	2881	27

Table 11S. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **13**.

Table 12S. Torsion angles $[^{\circ}]$ for **13**.

C(1)-O(2)-N(1)-O(3)	-11.5(3)
C(1)-O(2)-N(1)-O(4)	168.9(2)
C(5)-O(1)-C(1)-O(2)	177.1(2)
C(5)-O(1)-C(1)-C(2)	-67.6(3)
N(1)-O(2)-C(1)-O(1)	-81.5(3)
N(1)-O(2)-C(1)-C(2)	160.6(2)
C(9)-O(5)-C(2)-C(1)	107.6(3)
C(9)-O(5)-C(2)-C(3)	-135.9(2)
O(1)-C(1)-C(2)-O(5)	172.9(2)
O(2)-C(1)-C(2)-O(5)	-71.9(3)
O(1)-C(1)-C(2)-C(3)	57.7(3)
O(2)-C(1)-C(2)-C(3)	172.9(2)
C(11)-O(7)-C(3)-C(4)	115.2(3)
C(11)-O(7)-C(3)-C(2)	-123.2(3)
O(5)-C(2)-C(3)-O(7)	74.9(3)
C(1)-C(2)-C(3)-O(7)	-168.2(2)
O(5)-C(2)-C(3)-C(4)	-166.6(2)
C(1)-C(2)-C(3)-C(4)	-49.7(3)
C(13)-O(9)-C(4)-C(3)	139.5(2)
C(13)-O(9)-C(4)-C(5)	-101.4(3)
O(7)-C(3)-C(4)-O(9)	-73.8(3)
C(2)-C(3)-C(4)-O(9)	167.7(2)
O(7)-C(3)-C(4)-C(5)	168.3(2)
C(2)-C(3)-C(4)-C(5)	49.8(3)
C(1)-O(1)-C(5)-C(6)	-172.9(2)
C(1)-O(1)-C(5)-C(4)	64.7(3)
O(9)-C(4)-C(5)-O(1)	-169.9(2)
C(3)-C(4)-C(5)-O(1)	-54.7(3)
O(9)-C(4)-C(5)-C(6)	74.6(3)
C(3)-C(4)-C(5)-C(6)	-170.1(2)
C(7)-O(11)-C(6)-C(5)	174.4(2)
O(1)-C(5)-C(6)-O(11)	165.6(2)
C(4)-C(5)-C(6)-O(11)	-76.4(3)
C(6)-O(11)-C(7)-O(12)	-2.2(4)

C(6)-O(11)-C(7)-C(8)	175.8(2)
C(2)-O(5)-C(9)-O(6)	-1.4(4)
C(2)-O(5)-C(9)-C(10)	179.1(2)
C(3)-O(7)-C(11)-O(8)	3.3(4)
C(3)-O(7)-C(11)-C(12)	-176.3(2)
C(4)-O(9)-C(13)-O(10)	0.0(4)
C(4)-O(9)-C(13)-C(14)	177.8(2)

Table 13S. Hydrogen bonds for 13 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(2)-H(2)O(8)#1	1.00	2.51	3.293(3)	134.9
C(4)-H(4)O(8)#1	1.00	2.40	3.217(3)	138.9
C(5)-H(5)O(12)#2	1.00	2.63	3.284(4)	123.3
C(8)-H(8B)O(1)#2	0.98	2.53	3.452(4)	156.4
C(10)-H(10B)O(6)#3	0.98	2.48	3.410(3)	157.8
C(12)-H(12A)O(6)#4	0.98	2.53	3.415(4)	149.5
C(12)-H(12B)O(10)#5	0.98	2.58	3.398(4)	140.5
C(14)-H(14A)O(10)#3	0.98	2.57	3.383(3)	140.0
C(14)-H(14B)O(12)#3	0.98	2.57	3.519(4)	162.9

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 x-1/2,-y+1/2,-z+1 #3 x-1,y,z #4 -x+1,y-1/2,-z+1/2 #5 -x+1,y+1/2,-z+1/2 Projection view with 50% probability ellipsoids:

Compound 14

Table 14S. Crystal data and structure	refinement for 14.	
Identification code	d14017_sq/lt/x8/Tb6-P33	3
Empirical formula	C ₃₄ H ₂₇ N O ₁₂	
Formula weight	641.56	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21	
Unit cell dimensions	a = 14.9257(16) Å	α= 90°.
	b = 5.4551(6) Å	$\beta = 95.990(7)^{\circ}.$
	c = 21.093(2) Å	$\gamma = 90^{\circ}.$
Volume	1708.0(3) Å ³	
Z	2	
Density (calculated)	1.247 Mg/m ³	
Absorption coefficient	0.096 mm ⁻¹	
F(000)	668	
Crystal size	0.578 x 0.109 x 0.075 mi	m ³
Theta range for data collection	1.596 to 25.502°.	
Index ranges	-18≤h≤17, -6≤k≤6, -25≤l	≤25
Reflections collected	17263	
Independent reflections	6067 [R(int) = 0.0829]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	0.9583 and 0.8124	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	6067 / 471 / 497	
Goodness-of-fit on F ²	1.035	
Final R indices [I>2sigma(I)]	R1 = 0.0789, wR2 = 0.16	595
R indices (all data)	R1 = 0.1668, wR2 = 0.20)84
Absolute structure parameter	0.5(10)	
Extinction coefficient	0.034(5)	
Largest diff. peak and hole	0.467 and -0.229 e.Å ⁻³	

	X	у	Z	U(eq)
O(1)	3140(3)	3962(10)	2193(3)	47(1)
O(2)	2177(4)	3326(12)	1322(3)	61(2)
O(3)	3341(5)	4394(16)	775(3)	89(2)
O(4)	2610(5)	1009(17)	567(4)	101(3)
O(5)	1097(3)	7264(11)	1669(2)	46(1)
O(6)	-133(4)	5212(12)	1926(3)	59(2)
O(7)	1165(3)	7500(9)	3031(2)	33(1)
O(8)	1400(4)	11503(10)	3229(3)	53(2)
O(9)	3047(3)	7720(10)	3604(2)	38(1)
O(10)	2264(5)	5816(16)	4297(3)	93(3)
O(11)	4988(3)	3920(11)	2772(3)	59(2)
O(12)	5196(7)	61(17)	3105(5)	79(3)
O(12')	5575(18)	1610(60)	3493(9)	79(3)
N(1)	2774(6)	2890(20)	846(4)	81(3)
C(1)	2486(5)	5113(17)	1774(4)	48(2)
C(2)	1666(5)	5784(15)	2109(3)	37(2)
C(3)	1946(4)	7288(16)	2691(3)	34(2)
C(4)	2705(5)	6062(15)	3110(3)	35(2)
C(5)	3480(5)	5482(15)	2717(4)	41(2)
C(6)	4179(5)	4017(17)	3110(4)	51(2)
C(7)	5510(6)	2020(20)	2892(5)	67(3)
C(8)	6370(20)	2400(80)	2610(30)	54(4)
C(9)	6387(12)	3430(40)	2022(10)	62(6)
C(10)	7211(12)	3550(40)	1709(10)	88(8)
C(11)	7982(14)	2560(50)	2042(12)	56(5)
C(12)	7970(20)	1320(70)	2595(17)	89(11)
C(13)	7185(14)	1260(50)	2883(13)	84(8)
C(8')	6410(20)	1850(90)	2660(30)	54(4)
C(9')	6746(12)	4150(40)	2575(11)	56(6)
C(10')	7679(12)	4350(40)	2424(10)	62(6)
C(11')	8122(18)	2130(60)	2392(17)	56(5)

Table 15S. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for 14. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(12')	7652(16)	-180(50)	2479(12)	58(6)
C(13')	6862(15)	-60(50)	2624(11)	56(6)
C(14)	184(5)	6803(17)	1627(4)	44(2)
C(15)	-308(6)	8512(17)	1176(4)	50(2)
C(16)	-1236(6)	8080(20)	1026(4)	76(3)
C(17)	-1730(8)	9680(30)	607(5)	88(4)
C(18)	-1320(9)	11650(30)	353(5)	89(3)
C(19)	-400(8)	12010(20)	502(5)	81(3)
C(20)	100(7)	10505(19)	919(4)	64(3)
C(21)	977(5)	9678(14)	3300(4)	32(2)
C(22)	214(5)	9460(14)	3673(3)	34(2)
C(23)	-373(4)	7433(15)	3607(3)	34(2)
C(24)	-1072(5)	7241(16)	3983(4)	40(2)
C(25)	-1198(5)	9010(15)	4429(4)	39(2)
C(26)	-618(5)	11024(15)	4498(4)	42(2)
C(27)	90(5)	11253(14)	4124(4)	39(2)
C(28)	2789(5)	7350(20)	4197(4)	53(2)
C(29)	3080(17)	8750(50)	4745(12)	46(3)
C(30)	3060(18)	8120(50)	5381(13)	60(10)
C(31)	3380(20)	9740(60)	5859(11)	67(10)
C(32)	3730(30)	12000(50)	5700(13)	110(20)
C(33)	3750(30)	12640(40)	5063(14)	94(15)
C(34)	3420(20)	11010(50)	4586(11)	63(9)
C(29')	3278(8)	9200(20)	4635(5)	46(3)
C(30')	3015(8)	9380(30)	5246(6)	68(5)
C(31')	3451(8)	11010(40)	5681(5)	74(6)
C(32')	4150(8)	12460(30)	5505(5)	90(6)
C(33')	4413(10)	12280(20)	4894(5)	84(6)
C(34')	3977(10)	10640(20)	4459(4)	63(5)

O(1)-C(1)	1.396(10)	C(8)-C(13)	1.44(5)
O(1)-C(5)	1.433(9)	C(9)-C(10)	1.46(2)
O(2)-C(1)	1.407(9)	C(9)-H(9)	0.9500
O(2)-N(1)	1.430(9)	C(10)-C(11)	1.39(3)
O(3)-N(1)	1.197(11)	C(10)-H(10)	0.9500
O(4)-N(1)	1.197(11)	C(11)-C(12)	1.35(4)
O(5)-C(14)	1.380(9)	C(11)-H(11)	0.9500
O(5)-C(2)	1.438(9)	C(12)-C(13)	1.38(3)
O(6)-C(14)	1.200(9)	C(12)-H(12)	0.9500
O(7)-C(21)	1.359(8)	C(13)-H(13)	0.9500
O(7)-C(3)	1.435(7)	C(8')-C(13')	1.25(4)
O(8)-C(21)	1.197(8)	C(8')-C(9')	1.37(5)
O(9)-C(28)	1.361(10)	C(9')-C(10')	1.47(2)
O(9)-C(4)	1.433(9)	C(9')-H(9')	0.9500
O(10)-C(28)	1.182(11)	C(10')-C(11')	1.38(4)
O(11)-C(7)	1.306(11)	C(10')-H(10')	0.9500
O(11)-C(6)	1.466(8)	C(11')-C(12')	1.46(4)
O(12)-C(7)	1.268(12)	C(11')-H(11')	0.9500
O(12')-C(7)	1.281(15)	C(12')-C(13')	1.25(3)
C(1)-C(2)	1.520(10)	C(12')-H(12')	0.9500
C(1)-H(1)	1.0000	C(13')-H(13')	0.9500
C(2)-C(3)	1.500(10)	C(14)-C(15)	1.473(12)
C(2)-H(2)	1.0000	C(15)-C(20)	1.384(12)
C(3)-C(4)	1.517(10)	C(15)-C(16)	1.408(12)
C(3)-H(3)	1.0000	C(16)-C(17)	1.395(15)
C(4)-C(5)	1.525(10)	C(16)-H(16)	0.9500
C(4)-H(4)	1.0000	C(17)-C(18)	1.372(17)
C(5)-C(6)	1.494(11)	C(17)-H(17)	0.9500
C(5)-H(5)	1.0000	C(18)-C(19)	1.390(16)
C(6)-H(6A)	0.9900	C(18)-H(18)	0.9500
C(6)-H(6B)	0.9900	C(19)-C(20)	1.367(14)
C(7)-C(8')	1.475(15)	С(19)-Н(19)	0.9500
C(7)-C(8)	1.479(14)	C(20)-H(20)	0.9500
C(8)-C(9)	1.36(5)	C(21)-C(22)	1.454(10)

Table 16S.Bond lengths [Å] and angles [°] for14.

C(22)-C(27)	1.390(10)	C(1)-O(1)-C(5)	113.4(6)
C(22)-C(23)	1.409(10)	C(1)-O(2)-N(1)	114.0(6)
C(23)-C(24)	1.379(9)	C(14)-O(5)-C(2)	116.8(6)
C(23)-H(23)	0.9500	C(21)-O(7)-C(3)	119.6(6)
C(24)-C(25)	1.375(11)	C(28)-O(9)-C(4)	117.5(6)
C(24)-H(24)	0.9500	C(7)-O(11)-C(6)	116.1(7)
C(25)-C(26)	1.398(11)	O(3)-N(1)-O(4)	129.5(9)
C(25)-H(25)	0.9500	O(3)-N(1)-O(2)	118.4(9)
C(26)-C(27)	1.390(10)	O(4)-N(1)-O(2)	112.1(8)
C(26)-H(26)	0.9500	O(1)-C(1)-O(2)	105.9(7)
C(27)-H(27)	0.9500	O(1)-C(1)-C(2)	111.0(6)
C(28)-C(29)	1.42(2)	O(2)-C(1)-C(2)	105.0(6)
C(28)-C(29')	1.503(13)	O(1)-C(1)-H(1)	111.5
C(29)-C(30)	1.3900	O(2)-C(1)-H(1)	111.5
C(29)-C(34)	1.3900	C(2)-C(1)-H(1)	111.5
C(30)-C(31)	1.3900	O(5)-C(2)-C(3)	108.5(6)
C(30)-H(30)	0.9500	O(5)-C(2)-C(1)	106.5(6)
C(31)-C(32)	1.3900	C(3)-C(2)-C(1)	110.0(6)
C(31)-H(31)	0.9500	O(5)-C(2)-H(2)	110.6
C(32)-C(33)	1.3900	C(3)-C(2)-H(2)	110.6
C(32)-H(32)	0.9500	C(1)-C(2)-H(2)	110.6
C(33)-C(34)	1.3900	O(7)-C(3)-C(2)	106.3(5)
С(33)-Н(33)	0.9500	O(7)-C(3)-C(4)	109.9(5)
C(34)-H(34)	0.9500	C(2)-C(3)-C(4)	111.3(6)
C(29')-C(30')	1.3900	O(7)-C(3)-H(3)	109.7
C(29')-C(34')	1.3900	C(2)-C(3)-H(3)	109.7
C(30')-C(31')	1.3900	C(4)-C(3)-H(3)	109.7
C(30')-H(30')	0.9500	O(9)-C(4)-C(3)	109.5(6)
C(31')-C(32')	1.3900	O(9)-C(4)-C(5)	107.0(6)
C(31')-H(31')	0.9500	C(3)-C(4)-C(5)	109.7(6)
C(32')-C(33')	1.3900	O(9)-C(4)-H(4)	110.2
C(32')-H(32')	0.9500	C(3)-C(4)-H(4)	110.2
C(33')-C(34')	1.3900	C(5)-C(4)-H(4)	110.2
C(33')-H(33')	0.9500	O(1)-C(5)-C(6)	106.8(7)
C(34')-H(34')	0.9500	O(1)-C(5)-C(4)	108.1(6)
		C(6)-C(5)-C(4)	109.6(6)

O(1)-C(5)-H(5)	110.7	C(8')-C(9')-C(10')	118.0(19)
C(6)-C(5)-H(5)	110.7	C(8')-C(9')-H(9')	121.0
C(4)-C(5)-H(5)	110.7	C(10')-C(9')-H(9')	121.0
O(11)-C(6)-C(5)	108.2(6)	C(11')-C(10')-C(9')	114(2)
O(11)-C(6)-H(6A)	110.1	С(11')-С(10')-Н(10')	122.8
C(5)-C(6)-H(6A)	110.1	C(9')-C(10')-H(10')	122.8
O(11)-C(6)-H(6B)	110.1	C(10')-C(11')-C(12')	121(2)
C(5)-C(6)-H(6B)	110.1	C(10')-C(11')-H(11')	119.7
H(6A)-C(6)-H(6B)	108.4	C(12')-C(11')-H(11')	119.7
O(12)-C(7)-O(11)	120.1(8)	C(13')-C(12')-C(11')	118(2)
O(12')-C(7)-O(11)	108.1(13)	C(13')-C(12')-H(12')	121.2
O(12')-C(7)-C(8')	110(3)	C(11')-C(12')-H(12')	121.2
O(11)-C(7)-C(8')	122.0(17)	C(12')-C(13')-C(8')	126(3)
O(12)-C(7)-C(8)	129.0(16)	C(12')-C(13')-H(13')	117.0
O(11)-C(7)-C(8)	109.4(15)	C(8')-C(13')-H(13')	117.0
C(9)-C(8)-C(13)	116.3(16)	O(6)-C(14)-O(5)	122.7(8)
C(9)-C(8)-C(7)	122(3)	O(6)-C(14)-C(15)	126.9(7)
C(13)-C(8)-C(7)	121(3)	O(5)-C(14)-C(15)	110.4(7)
C(8)-C(9)-C(10)	122.1(18)	C(20)-C(15)-C(16)	120.4(9)
C(8)-C(9)-H(9)	118.9	C(20)-C(15)-C(14)	122.7(8)
C(10)-C(9)-H(9)	118.9	C(16)-C(15)-C(14)	116.9(8)
C(11)-C(10)-C(9)	116.5(19)	C(17)-C(16)-C(15)	118.7(11)
С(11)-С(10)-Н(10)	121.8	C(17)-C(16)-H(16)	120.7
C(9)-C(10)-H(10)	121.8	C(15)-C(16)-H(16)	120.7
C(12)-C(11)-C(10)	123(2)	C(18)-C(17)-C(16)	120.6(11)
C(12)-C(11)-H(11)	118.5	C(18)-C(17)-H(17)	119.7
C(10)-C(11)-H(11)	118.5	C(16)-C(17)-H(17)	119.7
C(11)-C(12)-C(13)	119(2)	C(17)-C(18)-C(19)	119.6(11)
С(11)-С(12)-Н(12)	120.6	C(17)-C(18)-H(18)	120.2
C(13)-C(12)-H(12)	120.6	C(19)-C(18)-H(18)	120.2
C(12)-C(13)-C(8)	123(2)	C(20)-C(19)-C(18)	121.3(12)
С(12)-С(13)-Н(13)	118.6	C(20)-C(19)-H(19)	119.4
C(8)-C(13)-H(13)	118.6	C(18)-C(19)-H(19)	119.4
C(13')-C(8')-C(9')	123.1(19)	C(19)-C(20)-C(15)	119.4(10)
C(13')-C(8')-C(7)	126(3)	C(19)-C(20)-H(20)	120.3
C(9')-C(8')-C(7)	110(3)	C(15)-C(20)-H(20)	120.3

O(8)-C(21)-O(7)	122.7(6)	C(29)-C(30)-H(30)	120.0
O(8)-C(21)-C(22)	126.1(7)	C(30)-C(31)-C(32)	120.0
O(7)-C(21)-C(22)	111.2(6)	C(30)-C(31)-H(31)	120.0
C(27)-C(22)-C(23)	119.6(7)	C(32)-C(31)-H(31)	120.0
C(27)-C(22)-C(21)	118.7(7)	C(33)-C(32)-C(31)	120.0
C(23)-C(22)-C(21)	121.7(7)	C(33)-C(32)-H(32)	120.0
C(24)-C(23)-C(22)	120.2(7)	C(31)-C(32)-H(32)	120.0
С(24)-С(23)-Н(23)	119.9	C(34)-C(33)-C(32)	120.0
С(22)-С(23)-Н(23)	119.9	C(34)-C(33)-H(33)	120.0
C(25)-C(24)-C(23)	120.4(8)	С(32)-С(33)-Н(33)	120.0
C(25)-C(24)-H(24)	119.8	C(33)-C(34)-C(29)	120.0
C(23)-C(24)-H(24)	119.8	C(33)-C(34)-H(34)	120.0
C(24)-C(25)-C(26)	119.7(7)	C(29)-C(34)-H(34)	120.0
C(24)-C(25)-H(25)	120.1	C(30')-C(29')-C(34')	120.0
С(26)-С(25)-Н(25)	120.1	C(30')-C(29')-C(28)	116.9(7)
C(27)-C(26)-C(25)	120.7(7)	C(34')-C(29')-C(28)	123.1(7)
C(27)-C(26)-H(26)	119.6	C(29')-C(30')-C(31')	120.0
C(25)-C(26)-H(26)	119.6	C(29')-C(30')-H(30')	120.0
C(26)-C(27)-C(22)	119.3(7)	C(31')-C(30')-H(30')	120.0
C(26)-C(27)-H(27)	120.4	C(32')-C(31')-C(30')	120.0
C(22)-C(27)-H(27)	120.4	C(32')-C(31')-H(31')	120.0
O(10)-C(28)-O(9)	121.7(9)	C(30')-C(31')-H(31')	120.0
O(10)-C(28)-C(29)	112.9(14)	C(33')-C(32')-C(31')	120.0
O(9)-C(28)-C(29)	125.4(14)	C(33')-C(32')-H(32')	120.0
O(10)-C(28)-C(29')	130.8(9)	C(31')-C(32')-H(32')	120.0
O(9)-C(28)-C(29')	107.5(8)	C(32')-C(33')-C(34')	120.0
C(30)-C(29)-C(34)	120.0	C(32')-C(33')-H(33')	120.0
C(30)-C(29)-C(28)	128.2(18)	C(34')-C(33')-H(33')	120.0
C(34)-C(29)-C(28)	111.8(18)	C(33')-C(34')-C(29')	120.0
C(31)-C(30)-C(29)	120.0	C(33')-C(34')-H(34')	120.0
C(31)-C(30)-H(30)	120.0	C(29')-C(34')-H(34')	120.0

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	32(3)	44(4)	67(4)	-9(3)	18(3)	0(3)
O(2)	39(3)	73(5)	75(4)	-32(3)	22(3)	-17(3)
O(3)	83(5)	114(6)	75(5)	-27(4)	36(4)	-32(5)
O(4)	88(6)	121(7)	98(6)	-64(6)	28(5)	-23(5)
O(5)	37(3)	55(4)	46(3)	2(3)	9(2)	-14(3)
O(6)	36(3)	67(5)	74(4)	14(3)	9(3)	-14(3)
O(7)	21(3)	27(3)	52(3)	-2(3)	14(2)	-2(2)
O(8)	51(4)	29(3)	82(4)	3(3)	22(3)	-12(3)
O(9)	31(3)	36(3)	48(3)	-5(3)	3(2)	-3(2)
O(10)	94(6)	130(7)	59(4)	-7(4)	28(4)	-61(5)
O(11)	30(3)	53(4)	99(5)	9(3)	28(3)	8(3)
O(12)	86(7)	64(7)	96(7)	23(5)	58(6)	33(5)
O(12')	86(7)	64(7)	96(7)	23(5)	58(6)	33(5)
N(1)	64(6)	112(8)	72(6)	-45(5)	28(5)	-29(5)
C(1)	35(5)	65(6)	47(5)	-14(4)	14(4)	-17(4)
C(2)	31(4)	39(5)	42(4)	-2(3)	9(3)	-8(3)
C(3)	23(4)	47(5)	36(4)	-6(4)	12(3)	-4(3)
C(4)	34(4)	32(4)	41(4)	2(3)	11(3)	0(3)
C(5)	28(4)	43(5)	54(5)	-2(4)	12(3)	-5(3)
C(6)	31(4)	49(6)	76(6)	11(5)	24(4)	2(4)
C(7)	49(5)	79(7)	79(6)	17(6)	32(5)	24(5)
C(8)	34(5)	48(13)	82(8)	1(9)	18(6)	11(5)
C(9)	37(9)	73(14)	79(12)	4(10)	25(9)	15(9)
C(10)	43(9)	130(20)	92(15)	50(14)	24(9)	23(11)
C(11)	17(6)	60(9)	92(17)	-8(10)	5(9)	-8(5)
C(12)	42(13)	90(20)	140(20)	49(18)	20(13)	36(15)
C(13)	47(11)	90(20)	112(18)	26(15)	17(11)	38(12)
C(8')	34(5)	48(13)	82(8)	1(9)	18(6)	11(5)
C(9')	30(8)	52(11)	88(17)	-18(11)	16(10)	-13(8)
C(10')	32(9)	68(10)	89(16)	-24(11)	25(10)	-17(8)
C(11')	17(6)	60(9)	92(17)	-8(10)	5(9)	-8(5)

Table 17S.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 14. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

C(12')	46(10)	48(11)	87(15)	-2(13)	35(11)	-5(8)
C(13')	49(11)	50(12)	75(17)	11(11)	32(11)	12(8)
C(14)	32(4)	54(6)	46(5)	-8(4)	5(4)	-10(4)
C(15)	47(5)	57(6)	47(5)	-5(4)	6(4)	2(4)
C(16)	47(5)	116(10)	66(6)	19(6)	6(5)	15(5)
C(17)	66(7)	127(10)	69(7)	12(7)	-4(6)	40(6)
C(18)	101(8)	94(9)	69(7)	8(6)	-3(6)	47(7)
C(19)	114(8)	70(8)	56(6)	1(5)	0(6)	27(6)
C(20)	79(7)	65(7)	47(5)	4(4)	-1(5)	-11(5)
C(21)	25(4)	21(4)	50(5)	0(3)	7(3)	1(3)
C(22)	29(4)	27(4)	46(5)	3(3)	5(3)	3(3)
C(23)	28(4)	33(4)	43(4)	-4(4)	8(3)	-2(3)
C(24)	22(4)	43(5)	56(5)	1(4)	10(3)	4(4)
C(25)	29(4)	40(5)	51(5)	2(4)	16(4)	9(3)
C(26)	35(5)	40(5)	50(5)	0(4)	6(4)	13(4)
C(27)	37(4)	32(5)	49(5)	-4(4)	5(4)	1(4)
C(28)	36(5)	72(6)	53(5)	-7(4)	12(4)	-2(4)
C(29)	12(6)	77(8)	50(6)	-11(6)	13(4)	12(5)
C(30)	26(17)	100(30)	54(10)	-7(12)	19(11)	-14(17)
C(31)	60(20)	70(20)	64(14)	-11(13)	8(16)	33(17)
C(32)	140(50)	90(20)	78(17)	-7(17)	-20(30)	-10(30)
C(33)	140(40)	53(17)	83(18)	9(13)	-40(20)	17(19)
C(34)	50(20)	72(14)	66(17)	4(12)	-9(16)	10(15)
C(29')	12(6)	77(8)	50(6)	-11(6)	13(4)	12(5)
C(30')	40(9)	117(16)	51(9)	-13(9)	17(7)	0(9)
C(31')	25(8)	129(19)	68(11)	-35(10)	3(7)	33(10)
C(32')	50(10)	146(17)	72(11)	-50(12)	-6(8)	0(10)
C(33')	36(10)	139(15)	78(9)	-46(10)	10(7)	-21(9)
C(34')	29(9)	101(11)	59(8)	-27(8)	5(7)	-16(7)

	х	У	Z	U(eq)
H(1)	2736	6574	1567	58
H(2)	1340	4274	2225	44
H(3)	2141	8952	2562	41
H(4)	2483	4526	3300	42
H(5)	3746	7023	2562	49
H(6A)	4322	4792	3533	61
H(6B)	3953	2338	3175	61
H(9)	5846	4079	1809	74
H(10)	7222	4272	1300	105
H(11)	8542	2758	1871	67
H(12)	8493	497	2782	107
H(13)	7183	437	3279	101
H(9')	6385	5566	2611	67
H(10')	7957	5881	2353	74
H(11')	8737	2110	2314	67
H(12')	7937	-1711	2427	70
H(13')	6579	-1567	2712	68
H(16)	-1520	6733	1208	92
H(17)	-2355	9399	497	106
H(18)	-1663	12752	77	106
H(19)	-114	13335	310	97
H(20)	722	10824	1031	77
H(23)	-288	6196	3302	41
H(24)	-1468	5876	3934	48
H(25)	-1678	8864	4689	47
H(26)	-708	12251	4805	50
H(27)	486	12620	4175	47
H(30)	2824	6574	5490	72
H(31)	3369	9310	6294	80
H(32)	3949	13114	6026	126

Table 18S. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 14.

H(33)	3984	14181	4954	113
H(34)	3439	11445	4151	76
H(30')	2537	8391	5366	82
H(31')	3271	11137	6099	88
H(32')	4448	13574	5802	108
H(33')	4891	13266	4773	101
H(34')	4157	10520	4041	76

Table 19S.Torsion angles [°] for 14.

C(1)-O(2)-N(1)-O(3)	-17.4(13)
C(1)-O(2)-N(1)-O(4)	163.3(9)
C(5)-O(1)-C(1)-O(2)	-175.5(6)
C(5)-O(1)-C(1)-C(2)	-62.0(8)
N(1)-O(2)-C(1)-O(1)	-77.7(8)
N(1)-O(2)-C(1)-C(2)	164.7(7)
C(14)-O(5)-C(2)-C(3)	-103.5(7)
C(14)-O(5)-C(2)-C(1)	138.0(7)
O(1)-C(1)-C(2)-O(5)	171.7(6)
O(2)-C(1)-C(2)-O(5)	-74.3(8)
O(1)-C(1)-C(2)-C(3)	54.3(9)
O(2)-C(1)-C(2)-C(3)	168.3(7)
C(21)-O(7)-C(3)-C(2)	-138.9(7)
C(21)-O(7)-C(3)-C(4)	100.5(8)
O(5)-C(2)-C(3)-O(7)	72.9(7)
C(1)-C(2)-C(3)-O(7)	-170.9(7)
O(5)-C(2)-C(3)-C(4)	-167.4(5)
C(1)-C(2)-C(3)-C(4)	-51.2(8)
C(28)-O(9)-C(4)-C(3)	102.4(7)
C(28)-O(9)-C(4)-C(5)	-138.7(7)
O(7)-C(3)-C(4)-O(9)	-71.5(7)
C(2)-C(3)-C(4)-O(9)	170.9(6)
O(7)-C(3)-C(4)-C(5)	171.3(6)
C(2)-C(3)-C(4)-C(5)	53.8(8)
C(1)-O(1)-C(5)-C(6)	-178.9(6)

C(1)-O(1)-C(5)-C(4)	63.2(8)
O(9)-C(4)-C(5)-O(1)	-176.0(6)
C(3)-C(4)-C(5)-O(1)	-57.3(8)
O(9)-C(4)-C(5)-C(6)	67.9(8)
C(3)-C(4)-C(5)-C(6)	-173.4(7)
C(7)-O(11)-C(6)-C(5)	-153.3(8)
O(1)-C(5)-C(6)-O(11)	74.5(8)
C(4)-C(5)-C(6)-O(11)	-168.6(7)
C(6)-O(11)-C(7)-O(12)	22.5(15)
C(6)-O(11)-C(7)-O(12')	-42.4(18)
C(6)-O(11)-C(7)-C(8')	-171(4)
C(6)-O(11)-C(7)-C(8)	-170(3)
O(12)-C(7)-C(8)-C(9)	125(3)
O(11)-C(7)-C(8)-C(9)	-41(6)
O(12)-C(7)-C(8)-C(13)	-42(7)
O(11)-C(7)-C(8)-C(13)	152(4)
C(13)-C(8)-C(9)-C(10)	-5(6)
C(7)-C(8)-C(9)-C(10)	-173(3)
C(8)-C(9)-C(10)-C(11)	0(5)
C(9)-C(10)-C(11)-C(12)	6(4)
C(10)-C(11)-C(12)-C(13)	-8(5)
C(11)-C(12)-C(13)-C(8)	2(6)
C(9)-C(8)-C(13)-C(12)	4(7)
C(7)-C(8)-C(13)-C(12)	172(4)
O(12')-C(7)-C(8')-C(13')	70(8)
O(11)-C(7)-C(8')-C(13')	-162(5)
O(12')-C(7)-C(8')-C(9')	-102(4)
O(11)-C(7)-C(8')-C(9')	26(7)
C(13')-C(8')-C(9')-C(10')	0(9)
C(7)-C(8')-C(9')-C(10')	173(3)
C(8')-C(9')-C(10')-C(11')	-1(5)
C(9')-C(10')-C(11')-C(12')	3(4)
C(10')-C(11')-C(12')-C(13')	-5(4)
C(11')-C(12')-C(13')-C(8')	5(6)
C(9')-C(8')-C(13')-C(12')	-3(10)
C(7)-C(8')-C(13')-C(12')	-174(4)

C(2)-O(5)-C(14)-O(6)	-1.9(11)
C(2)-O(5)-C(14)-C(15)	178.1(6)
O(6)-C(14)-C(15)-C(20)	170.8(9)
O(5)-C(14)-C(15)-C(20)	-9.2(11)
O(6)-C(14)-C(15)-C(16)	-7.3(13)
O(5)-C(14)-C(15)-C(16)	172.8(8)
C(20)-C(15)-C(16)-C(17)	1.1(14)
C(14)-C(15)-C(16)-C(17)	179.2(9)
C(15)-C(16)-C(17)-C(18)	-0.9(16)
C(16)-C(17)-C(18)-C(19)	1.7(18)
C(17)-C(18)-C(19)-C(20)	-2.8(17)
C(18)-C(19)-C(20)-C(15)	2.9(15)
C(16)-C(15)-C(20)-C(19)	-2.1(14)
C(14)-C(15)-C(20)-C(19)	179.9(9)
C(3)-O(7)-C(21)-O(8)	5.5(10)
C(3)-O(7)-C(21)-C(22)	-174.4(6)
O(8)-C(21)-C(22)-C(27)	-18.5(11)
O(7)-C(21)-C(22)-C(27)	161.5(6)
O(8)-C(21)-C(22)-C(23)	164.4(8)
O(7)-C(21)-C(22)-C(23)	-15.7(10)
C(27)-C(22)-C(23)-C(24)	0.6(11)
C(21)-C(22)-C(23)-C(24)	177.8(7)
C(22)-C(23)-C(24)-C(25)	-0.5(11)
C(23)-C(24)-C(25)-C(26)	0.4(11)
C(24)-C(25)-C(26)-C(27)	-0.4(11)
C(25)-C(26)-C(27)-C(22)	0.5(11)
C(23)-C(22)-C(27)-C(26)	-0.6(11)
C(21)-C(22)-C(27)-C(26)	-177.8(7)
C(4)-O(9)-C(28)-O(10)	-4.0(13)
C(4)-O(9)-C(28)-C(29)	177.9(15)
C(4)-O(9)-C(28)-C(29')	176.3(7)
O(10)-C(28)-C(29)-C(30)	22(2)
O(9)-C(28)-C(29)-C(30)	-160.2(15)
O(10)-C(28)-C(29)-C(34)	-158.8(15)
O(9)-C(28)-C(29)-C(34)	20(2)
C(34)-C(29)-C(30)-C(31)	0.0

180(2)
0.0
0.0
0.0
0.0
0.0
-180(2)
-8.7(17)
171.0(8)
170.0(12)
-10.4(13)
0.0
178.7(11)
0.0
0.0
0.0
0.0
0.0
-178.6(12)

Table 20S. Hydrogen bonds for $14_sq~$ [Å and °].

d(D-H)	d(HA)	d(DA)	<(DHA)
1.00	2.60	3.375(10)	134.7
1.00	2.30	3.185(10)	146.4
	d(D-H) 1.00 1.00	d(D-H) d(HA) 1.00 2.60 1.00 2.30	d(D-H) d(HA) d(DA) 1.00 2.60 3.375(10) 1.00 2.30 3.185(10)

Symmetry transformations used to generate equivalent atoms: #1 x,y-1,z

Projection view with 30% probability ellipsoids- disorder components omitted for clarity:

