Iron-catalyzed ortho trifluoromethylation of anilines via

picolinamide assisted photoinduced C-H functionalization

Chengcai Xia,* Kai Wang, Guodong Wang and Guiyun Duan

Pharmacy College, Taishan Medical University, Taian 271016 (China).

E-mail: xiachc@163.com

Supporting Information

1.	General Information	2
2.	A possible mechanism	2
3.	Characterization data	3
4.	Copies of NMR Spectra	9

General Information

All commercial reagents were used as received. All products were isolated by short chromatography on a silica gel (200-300 mesh) column using petroleum ether (60-90°C) and ethyl acetate. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Advance DRX-400 and DRX-500 spectrometers at ambient temperature with CDCl₃ as solvent and tetramethylsilane (TMS) as the internal standard. All chemical shift values are quoted in ppm and coupling constants quoted in Hz. Compounds for HRMS were analyzed by positive mode electrospray ionization (ESI) using Agilent 6530 QTOF mass spectrometer.

General procedures for the preparation of picolinamide substrates

A mixture of anilines (10 mmol), pyridine-2-carbonyl chloride hydrochloride (1.05 equiv), NEt₃ (3.0 equiv) in anhydrous CH_2Cl_2 (20 mL) was stirred at room temperature overnight. Water was added and the mixture was extracted with CH_2Cl_2 . The combined organic layer was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography to give the desired amide products.

General experimental procedure for synthesis of product 3

Amide **1** (0.2 mmol), Langlois' reagent **2** (0.4 mmol), ferrocene (15 mol %) and acetone (2.0 mL) were combined in a 25 mL. The mixture was then stirred under UV irradiation (λ = 254 nm, intensity of 4.0 mW cm⁻²) for 36 hours at room temperature. After the conversion was completed as indicated by TLC, the mixture was evaporated under reduced pressure. The residue was purified directly by flash column chromatography (EA/PE, 1:200) to give the product **3**.

According to the experiment results and previous work,¹ a possible mechanism was suggested as follow:

Characterization of the products

N-(2-(trifluoromethyl)phenyl)picolinamide (3a)¹

White solid, 72% yield. M.p. 65-66 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.58 (s, 1H), 8.58 (d, J = 4.7 Hz, 1H), 8.51 (d, J = 8.3 Hz, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.85 – 7.81 (m, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.16 (d, J = 7.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 161.40, 148.31, 147.31, 136.64, 134.50 (q, J = 2.5 Hz), 131.91, 125.71, 125.14 (q, J = 5.0 Hz), 123.12 (q, J = 273.4 Hz), 123.00, 121.97, 121.47, 118.83 (q, J = 30.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -60.92. HRMS (ESI) calculated for C₁₃H₉F₃N₂O⁺: 267.0740 [M+H]⁺, found: 267.0742.

N-(4-methyl-2-(trifluoromethyl)phenyl)picolinamide (3b)¹

White solid, 67% yield. M.p. 67-68 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.55 (s, 1H), 8.66 (d, J = 4.4 Hz, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.29 (d, J = 7.8 Hz, 1H), 7.94 – 7.90 (m, 1H), 7.51 – 7.48 (m, 1H), 7.46 (s, 1H), 7.41 (d, J = 8.4 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.32, 148.42, 147.25, 136.62, 133.05, 132.37 (q, J = 1.3 Hz), 131.85 (q, J = 1.3 Hz), 125.60, 125.50 (q, J = 5.0 Hz), 123.39 (q, J = 273.4 Hz), 122.26, 121.44, 118.96 (q, J = 30.3 Hz), 19.83. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.82. HRMS (ESI) calculated for C₁₄H₁₁F₃N₂O⁺: 281.0896 [M+H]⁺, found: 281.0898.

N-(4-bromo-2-(trifluoromethyl)phenyl)picolinamide (3c)¹

C)		_Br
	L _N		
N	Ĥ	CF3	

White solid, 57% yield. M.p. 110-111 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.67 (s, 1H), 8.65 (d, *J* = 4.2 Hz, 1H), 8.55 (d, *J* = 8.9 Hz, 1H), 8.27 (d, *J* = 7.8 Hz, 1H), 7.91 (td, *J* = 7.7, 1.6 Hz, 1H), 7.77 (d, *J* = 1.9 Hz, 1H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.53 – 7.49 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.35, 149.05, 148.35, 137.72, 135.87, 134.75 (q, *J* = 1.0 Hz), 129.14 (q, *J* = 5.0 Hz), 126.87, 124.34, 123.18 (q, *J* = 274.2 Hz), 122.53, 121.22 (q, *J* = 31.3 Hz), 116.54. ¹⁹F NMR (471 MHz, CDCl₃) δ -61.27. HRMS (ESI) calculated for C₁₃H₈BrF₃N₂O⁺: 344.9845 [M+H]⁺, found: 344.9852.

N-(4-chloro-2-(trifluoromethyl)phenyl)picolinamide (3d)¹

White solid, 51% yield. M.p. 115-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.66 (s, 1H), 8.65 (d, *J* = 4.7 Hz, 1H), 8.60 (d, *J* = 8.9 Hz, 1H), 8.28 (d, *J* = 7.8 Hz, 1H), 7.94 – 7.89 (m, 1H), 7.63 (d, *J* = 2.2 Hz, 1H), 7.56 (d, *J* = 8.9 Hz, 1H), 7.50 (dd, *J* = 7.1, 5.2 Hz, 1H). ¹³C NMR

(101 MHz, CDCl₃) δ 162.37, 149.06, 148.34, 137.71, 134.24 (q, *J* = 1.0 Hz), 132.87, 129.29, 126.86, 126.30 (q, *J* = 5.0 Hz), 124.19, 123.30 (q, *J* = 273.7 Hz), 122.52, 121.06 (q, *J* = 30.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -61.33. HRMS (ESI) calculated for C₁₃H₈ClF₃N₂O⁺: 301.0350 [M+H]⁺, found: 301.0355.

N-(4-cyano-2-(trifluoromethyl)phenyl)picolinamide (3e)

White solid, 25% yield. M.p. 145-146 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.00 (s, 1H), 8.94 (d, *J* = 8.7 Hz, 1H), 8.68 (d, *J* = 4.2 Hz, 1H), 8.30 (d, *J* = 7.8 Hz, 1H), 7.96 (dd, *J* = 7.8, 1.7 Hz, 2H), 7.88 (dd, *J* = 8.7, 1.7 Hz, 1H), 7.58 – 7.55 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.59, 148.48, 139.63, 137.96, 136.74, 130.39 (q, *J* = 5.0 Hz), 127.35, 123.01 (q, *J* = 274.7 Hz), 122.76, 122.33, 122.23, 119.67 (q, *J* = 31.5 Hz), 117.61, 107.14. ¹⁹F NMR (470 MHz, CDCl₃) δ -61.69. HRMS (ESI) calculated for C₁₄H₈F₃N₃O⁺: 292.0692 [M+H]⁺, found: 292.0698.

N-(4-nitro-2-(trifluoromethyl)phenyl)picolinamide (3f)

NC N H CF3

White solid, 18% yield. M.p. 152-153 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.11 (s, 1H), 9.02 (d, *J* = 9.2 Hz, 1H), 8.69 (d, *J* = 4.2 Hz, 1H), 8.57 (d, *J* = 2.6 Hz, 1H), 8.48 (dd, *J* = 9.2, 2.6 Hz, 1H), 8.31 (d, *J* = 7.8 Hz, 1H), 7.99 – 7.95 (m, 1H), 7.57 (ddd, *J* = 7.6, 4.8, 1.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 161.62, 147.49, 147.35, 141.57, 140.26, 136.99, 127.40, 126.43, 121.93 (q, *J* = 274.7 Hz), 121.82, 121.52 (q, *J* = 5.0 Hz), 120.93, 118.23 (q, *J* = 31.5 Hz). ¹⁹F NMR (470 MHz, CDCl₃) δ -61.64. HRMS (ESI) calculated for C₁₃H₈F₃N₃O₃⁺: 312.0591 [M+H]⁺, found: 312.0586.

N-(2-methyl-6-(trifluoromethyl)phenyl)picolinamide (3g)¹

White solid, 60% yield. M.p. 55-56 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.65 (d, J = 4.2 Hz, 1H), 8.28 (d, J = 7.8 Hz, 1H), 7.90 (t, J = 7.7 Hz, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 7.1 Hz, 2H), 7.34 (t, J = 7.7 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.77, 149.21, 148.34, 138.79, 137.49, 134.66, 133.18 (q, J = 1.0 Hz), 127.42, 127.11, 126.61, 123.98 (q, J = 5.0 Hz), 123.79 (q, J = 273.7 Hz), 122.63, 18.47. ¹⁹F NMR (471 MHz, CDCl₃) δ -61.67. HRMS (ESI) calculated for C₁₄H₁₁F₃N₂O⁺: 281.0896 [M+H]⁺, found: 281.0909.

N-(2-fluoro-6-(trifluoromethyl)phenyl)picolinamide (3h)¹

White solid, 49% yield. M.p. 80-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 1H), 8.65 (d, J = 4.7 Hz, 1H), 8.28 (d, J = 7.8 Hz, 1H), 7.93 – 7.89 (m, 1H), 7.54 – 7.50 (m, 2H), 7.41 (dd, J = 7.9, 3.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.70, 158.50 (d, J = 255.5), 148.74, 148.37, 137.55, 128.49 (q, J = 1.0 Hz), 128.20 (d, J = 9.1 Hz), 126.83, 124.36 (q, J = 273.7 Hz), 122.75, 121.83 (q, J = 30.3 Hz), 121.74 (q, J = 5.0 Hz), 120.48 (d, J = 21.2 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -61.34, -114.22. HRMS (ESI) calculated for C₁₃H₈F₄N₂O⁺: 285.0646 [M+H]⁺, found: 285.0637.

N-(5-methyl-2-(trifluoromethyl)phenyl)picolinamide (3i)¹

White solid, 69% yield. M.p. 57-58 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.60 (s, 1H), 8.63 (d, J = 4.1 Hz, 1H), 8.40 (s, 1H), 8.27 (d, J = 7.8 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.47 (dd, J = 6.8, 5.1 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.37, 149.42, 148.29, 143.61, 137.60, 135.31 (q, J = 1.0 Hz), 126.64, 126.04 (q, J = 5.0 Hz), 124.79, 124.37 (q, J = 273.7 Hz), 123.51, 122.41, 117.22 (q, J = 30.3 Hz), 21.63. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.42. HRMS (ESI) calculated for C₁₄H₁₁F₃N₂O⁺: 281.0896 [M+H]⁺, found: 281.0895.

N-(5-bromo-2-(trifluoromethyl)phenyl)picolinamide (3j)¹

White solid, 58% yield. M.p. 102-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.71 (s, 1H), 8.89 (s, 1H), 8.65 (d, *J* = 4.2 Hz, 1H), 8.28 (d, *J* = 7.8 Hz, 1H), 7.92 (td, *J* = 7.7, 1.6 Hz, 1H), 7.51 (t, *J* = 7.4 Hz, 2H), 7.36 (dd, *J* = 8.4, 0.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.36, 148.94, 148.36, 137.76, 136.69, 127.44, 127.36 (q, *J* = 5.0 Hz), 126.97, 126.94, 125.51, 123.93 (q, *J* = 273.7 Hz), 122.57, 118.28 (q, *J* = 30.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -60.97. HRMS (ESI) calculated for C₁₃H₈BrF₃N₂O⁺: 344.9845 [M+H]⁺, found: 344.9845.

N-(5-chloro-2-(trifluoromethyl)phenyl)picolinamide (3k)¹

White solid, 50% yield. M.p. 82-83 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 8.74 (s, 1H), 8.64 (d, *J* = 4.5 Hz, 1H), 8.27 (d, *J* = 7.8 Hz, 1H), 7.92 (td, *J* = 7.7, 1.3 Hz, 1H), 7.56 (d, *J* = 8.5 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.19 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.36, 148.93, 148.35, 139.20, 137.75, 136.70, 127.24 (q, *J* = 5.0 Hz), 126.94, 123.93, 123.85 (q, *J* = 273.7 Hz), 122.56, 122.49, 117.74 (q, *J* = 30.3 Hz). ¹⁹F NMR (471

MHz, CDCl₃) δ -60.87. HRMS (ESI) calculated for C₁₃H₈ClF₃N₂O⁺: 301.0350 [M+H]⁺, found: 301.0355.

N-(5-fluoro-2-(trifluoromethyl)phenyl)picolinamide (3I)¹

White solid, 42% yield. M.p. 66-67 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 8.66 (d, J = 4.7 Hz, 1H), 8.51 (dd, J = 11.2, 2.1 Hz, 1H), 8.29 (d, J = 7.8 Hz, 1H), 7.93 (td, J = 7.7, 1.6 Hz, 1H), 7.64 (dd, J = 8.7, 6.1 Hz, 1H), 7.52 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H), 6.95 – 6.88 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.40 (d, J = 251.5 Hz), 163.85, 148.97, 148.37, 137.76, 137.67, 128.07 (q, J = 5.0 Hz), 126.95, 123.91 (q, J = 273.7 Hz), 122.57, 115.30 (q, J = 30.3 Hz), 110.68 (d, J = 23.2 Hz), 109.83 (d, J = 28.2 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -60.30, -104.57. HRMS (ESI) calculated for C₁₃H₈F₄N₂O⁺: 285.0646 [M+H]⁺, found: 285.0651.

N-(1-(trifluoromethyl)naphthalen-2-yl)picolinamide (3m)¹

White solid, 43% yield. M.p. 135-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.02 (s, 1H), 8.68 (d, *J* = 4.7 Hz, 1H), 8.53 (d, *J* = 9.1 Hz, 1H), 8.33 (d, *J* = 7.8 Hz, 1H), 8.23 (d, *J* = 9.5 Hz, 1H), 8.03 (d, *J* = 9.1 Hz, 1H), 7.95 – 7.91 (m, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.60 (ddd, *J* = 8.6, 6.9, 1.4 Hz, 1H), 7.54 – 7.50 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.59, 149.54, 148.29, 137.69, 135.17 (q, *J* = 2.0 Hz), 133.18, 131.24, 130.23, 128.62, 127.91, 126.78, 125.69, 124.57 (q, *J* = 5.0 Hz), 124.30 (q, *J* = 277.8 Hz), 122.64, 122.30, 113.74 (q, *J* = 28.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -62.20. HRMS (ESI) calculated for C₁₇H₁₁F₃N₂O⁺: 317.0896 [M+H]⁺, found: 317.0903.

3-methyl-N-(2-(trifluoromethyl)phenyl)picolinamide (3n)¹

White solid, 68% yield. M.p. 75-76 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.91 (s, 1H), 8.54 (d, J = 8.3 Hz, 1H), 8.48 (d, J = 4.3 Hz, 1H), 7.66 – 7.62 (m, 2H), 7.59 (t, J = 7.9 Hz, 1H), 7.37 (dd, J = 7.7, 4.6 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 2.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.85, 146.23, 145.62, 141.24, 136.38, 135.90 (q, J = 1.0 Hz), 132.75, 126.24, 126.11 (q, J = 5.0 Hz), 124.20 (q, J = 273.7 Hz), 123.70, 122.97, 119.94 (q, J = 30.3 Hz), 20.70. ¹⁹F NMR (471 MHz, CDCl₃) δ -61.07. HRMS (ESI) calculated for C₁₄H₁₁F₃N₂O⁺: 281.0896 [M+H]⁺, found: 281.0904.

N-(2-(trifluoromethyl)phenyl)pyrazine-2-carboxamide (3o)¹

White solid, 57% yield. M.p. 120-121 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 9.51 (d, *J* = 0.9 Hz, 1H), 8.83 (d, *J* = 2.3 Hz, 1H), 8.64 (s, 1H), 8.54 (d, *J* = 8.3 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.63 (t, *J* = 7.9 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.07, 147.81, 144.76, 144.05, 142.65, 134.93 (q, *J* = 2.0 Hz), 133.03, 126.26 (q, *J* = 5.0 Hz), 124.59, 124.06 (q, *J* = 273.7 Hz), 123.26, 120.09 (q, *J* = 30.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -60.79. HRMS (ESI) calculated for C₁₂H₈F₃N₃O⁺: 268.0692 [M+H]⁺, found: 268.0693.

N-(2-(trifluoromethyl)phenyl)isoquinoline-3-carboxamide (3p)¹

White solid, 70% yield. M.p. 142-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.89 (s, 1H), 9.26 (s, 1H), 8.71 (s, 1H), 8.66 (d, *J* = 8.3 Hz, 1H), 8.08 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 8.1 Hz, 1H), 7.82 – 7.77 (m, 1H), 7.76 – 7.71 (m, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.63 (t, *J* = 7.9 Hz, 1H), 7.26 – 7.22 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.01, 151.34, 143.14, 136.06, 135.81 (q, *J* = 2.0 Hz), 132.92, 131.25, 129.96, 129.24, 128.21, 127.82, 126.15 (q, *J* = 5.0 Hz), 124.23 (q, *J* = 273.7 Hz), 123.90, 123.12, 120.97, 119.84 (q, *J* = 30.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -60.89. HRMS (ESI) calculated for C₁₇H₁₁F₃N₂O⁺: 317.0896 [M+H]⁺, found: 317.0905.

N-(2-(trifluoromethyl)phenyl)quinoline-2-carboxamide (3q)

White solid, 42% yield. M.p. 145-146 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.99 (s, 1H), 8.67 (d, *J* = 8.3 Hz, 1H), 8.36 (s, 2H), 8.18 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.80 (t, *J* = 7.7 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.64 (dd, *J* = 15.0, 7.7 Hz, 2H), 7.27 – 7.24 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.50, 148.99, 146.25, 137.93, 135.68, 133.02, 130.41, 130.06, 129.53, 128.42, 127.67, 126.23 (q, *J* = 5.0 Hz), 124.28 (q, *J* = 273.4 Hz), 123.92, 122.63, 119.65 (q, *J* = 30.3 Hz), 118.58. ¹⁹F NMR (471 MHz, CDCl₃) δ - 60.80. HRMS (ESI) calculated for C₁₇H₁₁F₃N₂O⁺: 317.0896 [M+H]⁺, found: 317.0906.

(3,3,3-trifluoroprop-1-ene-1,1-diyl)dibenzene (3aa)²

Colourless oil, 21% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (dd, *J* = 6.3, 2.8 Hz, 3H), 7.34 – 7.31 (m, 3H), 7.26 – 7.22 (m, 4H), 6.12 (q, *J* = 8.3 Hz, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -55.59.

2-(trifluoromethyl)aniline (4a)¹

Colourless oil, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.9 Hz, 1H), 7.30 (dd, *J* = 11.4, 4.0 Hz, 1H), 6.79 (t, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 8.2 Hz, 1H), 4.04 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 143.45 (q, *J* = 1.3 Hz), 131.82 (q, *J* = 1.3 Hz), 125.50 (q, *J* = 5.0 Hz), 124.02 (q, *J* = 272.2 Hz), 116.58, 116.08, 112.80 (q, *J* = 30.3 Hz). ¹⁹F NMR (470 MHz, CDCl₃) δ -60.92.

2,3-dihydroxypropyl 2-((8-(trifluoromethyl)quinolin-4-yl)amino)benzoate (5a)³

White solid, 45% yield. M.p. 179-180 °C. ¹H NMR (400 MHz, MeOD) δ 8.69 (d, *J* = 5.3 Hz, 1H), 8.42 (d, *J* = 8.4 Hz, 1H), 8.12 (d, *J* = 7.0 Hz, 1H), 8.11 – 8.08 (m, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.68 – 7.65 (m, 1H), 7.59 – 7.56 (m, 1H), 7.52 (d, *J* = 5.3 Hz, 1H), 7.11 – 7.07 (m, 1H), 3.69 (dd, *J* = 10.4, 5.2 Hz, 1H), 3.62 (dd, *J* = 11.3, 4.7 Hz, 2H), 3.56 (dd, *J* = 11.3, 6.0 Hz, 2H); ¹³C NMR (101 MHz, MeOD) δ 169.87, 152.19, 147.12, 146.43, 144.22, 135.09, 132.79, 129.21 (q, *J* = 5.0 Hz), 128.24 (q, *J* = 28.3 Hz), 126.52, 125.52, 125.20 (q, *J* = 234.4 Hz), 123.07, 122.52, 119.17, 117.52, 106.05, 73.36, 64.19; ¹⁹F NMR (471 MHz, MeOD) δ -61.02. HRMS (ESI) calculated for C₂₀H₁₇F₃N₂O₄⁺: 407.1213 [M+H]⁺, found: 407.1208.

References:

- 1. J. Xu, L. Qiao, J. Shen, K. Chai, C. Shen, P. Zhang, Org. Lett., 2017, 19, 5661.
- 2. C. Shen, J. Xu, B. Ying, P. Zhang, ChemCatChem, 2016, 8, 3560.
- 3. G. Mouzin, H. Cousse, J. M. Autin, Synthesis, 1980, 55.

Copies of NMR Spectra

3a ¹H NMR

3a ¹³C NMR

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

11

-10.67 8.65 8.64 8.65 8.64 8.56 8.56 8.56 8.56 7.7.93 7.7.73 7.7.93 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.74 7.7.74 7.7.75 7.777 7.75 7.777 7.757

35	05 05 05 05 05 05 05 05 05 05 05 05 05 0
62.	4 4 5 5 5 7 7 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8
T	

-10.66 8.66 8.64 8.64 8.61 8.61 8.61 8.61 8.61 8.61 7.7.94 7.7.94 7.7.94 7.7.94 7.7.91 7.7.93 7.7.92 7.7.93 7.7.91 7.7.92 7.7.92 7.7.92 7.7.92 7.7.92 7.7.92 7.7.92 7.7.92 7.7.55

3d ¹⁹F NMR

3f ¹H NMR

-11.11 -1

3f ¹³C NMR

--61.64

3h ¹H NMR

3h ¹³C NMR

3i ¹³C NMR

3j	¹ H	NMR	

3j ¹⁹F NMR

3k ¹³C NMR

40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

3I ¹H NMR

$\begin{array}{c} -10.79\\ 8.67\\ 8.67\\ 8.65\\ 8.65\\ 8.65\\ 8.52\\ 8.55\\ 8.55\\ 8.55\\ 8.55\\ 8.55\\ 8.55\\ 7.79\\ 7.94\\ 7.94\\ 7.94\\ 7.94\\ 7.94\\ 7.94\\ 7.94\\ 7.94\\ 7.95\\ 7.7$

3I ¹³C NMR

3I ¹⁹F NMR

---62.20

40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

-16.07-16.07-147.81-147.81-147.65-142.65-134.96-134.96-134.96-134.96-132.13-132.92-126.18-128.13-128.1

3q ¹H NMR

-162.50

$\begin{array}{c} 148.99\\ 148.25\\ 135.68\\ 133.68\\ 133.02\\ 133.02\\ 127.55\\$

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

3aa ¹H NMR

5a ¹H NMR

5a ¹³C NMR

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)