ELECTRONIC SUPPLEMENTARY MATERIAL INFORMATION

Interrogation of biosynthetic pathways of the cruciferous phytoalexins nasturlexins with isotopically labelled compounds

M. Soledade C. Pedras* and Q. Huy To
Department of Chemistry, University of Saskatchewan, 110 Science Place,
Saskatoon, SK, S7N 5C9,
Canada

*Corresponding author: E-mail: s.pedras@usask.ca; telephone: 1-306-966-4772; fax: 1-306-966-4730

1 Electronic supplementary information (ESI) available: tables of isotope incorporation data for compounds 18a, 20a, 21a, 5a
and Phe; synthesis of new compounds 18a, 21a, 26c, incorporation schemes with ESI-HR-MS data and ESI spectra;
references; 1H and 13C NMR spectra of new compounds.
Table of contents

TABLE OF CONTENTS .. 2
RESULTS .. 3
Incorporation tables of compounds 18a, 20a, 21a, 5a and Ph .. 3

EXPERIMENTAL ... 5
Synthesis of new compounds ... 5
[2,3,4,5,6,7,8-D₇]- (E)-Styryl glucosinolate (18a) .. 5
[D₃CS]Methyl [2,3,4,5,6-D₅]-(2-hydroxy-2-phenylethyl)dithiocarbamate (21a) 7
[D₃CS]Dihydronasturlexin D (26c) ... 7

ESI-MS SPECTRA OF INCORPORATION EXPERIMENTS IN UPLAND CRESS (BARBAREA Verna) .. 9
Incorporation of [2,3,4,5,6-D₅]gluconasturtiin (8a) .. 9
Incorporation of [2,4,6-D₃,¹⁵N]-3-hydroxygluconasturtiin (9a) .. 10
Incorporation of [2,3,4,5,6-D₅]phenylethyl isothiocyanate (19a) .. 11
Incorporation of [2,4,6-D₃,¹⁵N]-3-hydroxyphenylethyl isothiocyanate (24a) 13
Incorporation of [2,3,4,5,6-D₅]nasturlexin A (1a) .. 14
Incorporation of [D₃CS, 2,4,6-D₃,¹⁵N]-3-hydroxynasturlexin A (25b) ... 15
Incorporation of methyl [2,3,4,5,6-D₅]-(E)-styril dithiocarbamate (22a) ... 16
Incorporation of [2,3,4,5,6-D₅]dihydronasturlexin C (23a) ... 17
Incorporation of [D₃CS]dihydronasturlexin D (26c) .. 19
Incorporation of [2,3,4,5,6-D₅]nasturlexin C (11a) .. 19

ESI-MS SPECTRA OF INCORPORATION EXPERIMENTS IN WATERCRESS (NASTURTIUM OFFICINALE) .. 20
Incorporation of [D₃CS 4,5,6,7-D₄]brassinin (5a) .. 20
Incorporation of [2,3,4,5,6-D₅]gluconasturtiin (8a) .. 21

REFERENCES .. 22
NMR SPECTRA OF NEW COMPOUNDS 18A, 21A, 26 AND 26A .. 22
Results

Isotope incorporation tables of compounds 18a, 20a, 21a, 5a and Phe

Table S1. Metabolism of [2,3,4,5,6,7,8-D₇]-(E)-styril glucosinolate (18a) in elicited and non-elicited leaves of upland cress plants (Barbara verna).

<table>
<thead>
<tr>
<th>Metabolites detected in leaf extracts</th>
<th>Elicited leaves</th>
<th>Non-elicited leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of Deuterium (Conc., µmol/100 g)ᵃ</td>
<td>% Deuterium (Conc., µmol/100 g)ᵇ</td>
</tr>
<tr>
<td>[2,3,4,5,6,7,8-D₇]-(E)-styril glucosinolate (18a)</td>
<td>ca. 99ᵇ (156 ± 40)</td>
<td>ca. 99%ᵇ (157 ± 54)</td>
</tr>
<tr>
<td>Gluconasturtiin (8)</td>
<td>NIᵇ (2,819 ± 507)</td>
<td>NIᵇ (6,171 ± 334)</td>
</tr>
<tr>
<td>Dihydronasturlexin C (23)</td>
<td>NIᵇ (≤ 0.3)</td>
<td>NIᵇ (ND)ᶜ</td>
</tr>
<tr>
<td>Nasturlexin C (11)</td>
<td>NIᵇ (16 ± 5)</td>
<td>NIᵇ (ND)ᶜ</td>
</tr>
<tr>
<td>Nasturlexin D (13)</td>
<td>NIᵇ (28 ± 10)</td>
<td>NIᵇ (ND)ᶜ</td>
</tr>
</tbody>
</table>

ᵃ Conc. = total concentration of non-labelled and labelled metabolites (µmol/100 g of fresh tissue, quantified by HPLC-DAD); values represent the mean and standard deviation of two independent experiments conducted in triplicate.
ᵇ Isotope incorporations calculated from HPLC-ESI-MS (peak intensities in negative mode); % of incorporation = \(\frac{[M – 1 + n]}{[M – 1] + [M – 1 + n]} \times 100 \) where n = number of D atoms; values represent the mean and standard deviation of two independent experiments conducted in triplicate.
ᶜ NI = no incorporation means D% ≤ 0.1, ESI-MS.
ᶜ ND = not detected (HPLC-DAD).

Table S2. Metabolism of [2,3,4,5,6-D₅]-(E,Z)-styril isothiocyanate (20a) in elicited leaves of upland cress plants (Barbara verna).

<table>
<thead>
<tr>
<th>Metabolites detected in leaf extracts</th>
<th>% of Deuterium (Conc., µmol/100 g)ᵃ</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2,3,4,5,6-D₅]-(E,Z)-Styril isothiocyanate (20a)</td>
<td>NIᵇ (ND)ᶜ</td>
</tr>
<tr>
<td>Dihydronasturlexin C (23)</td>
<td>NIᵇ (11 ± 13)</td>
</tr>
<tr>
<td>Nasturlexin C (11)</td>
<td>NIᵇ (12 ± 9)</td>
</tr>
<tr>
<td>Nasturlexin D (13)</td>
<td>NIᵇ (3 ± 2)</td>
</tr>
</tbody>
</table>

ᵃ Conc. = total concentration of non-labelled and labelled metabolites (µmol/100 g of fresh tissue, quantified by HPLC-DAD); values represent the mean and standard deviation of two independent experiments conducted in triplicate.
ᵇ NI = no incorporation means D% ≤ 0.1, ESI-MS.
ᶜ ND = not detected (HPLC-DAD).
Table S3. Metabolism of $[\text{D}_3\text{CS}]$methyl (2-hydroxy-2-[2,3,4,5,6-D_5]phenylethyl) dithiocarbamate (21a) in elicited leaves of upland cress plants (*Barbarea verna*).

<table>
<thead>
<tr>
<th>Metabolites detected in leaf extracts</th>
<th>% of Deuterium (Conc., μmol/100 g)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>[D$_3$CS]methyl (2-hydroxy-2-[2,3,4,5,6-D_5]phenylethyl) dithiocarbamate (21a)</td>
<td>NIb (ND)c</td>
</tr>
<tr>
<td>Dihydrornasturlexin C (23)</td>
<td>NIb (37 ± 8)</td>
</tr>
<tr>
<td>Nasturlexin C (11)</td>
<td>NIb (52 ± 28)</td>
</tr>
<tr>
<td>Nasturlexin D (13)</td>
<td>NIb (99 ± 25)</td>
</tr>
</tbody>
</table>

a Conc. = total concentration of non-labelled and labelled metabolites (μmol/100 g of fresh tissue, quantified by HPLC-DAD); values represent the mean and standard deviation of two independent experiments conducted in triplicate.

b NI = no incorporation means D% ≤ 0.1, ESI-MS.

c ND = not detected (HPLC-DAD).

Table S4. Metabolism of [2,3,4,5,6-D_5]phenylalanine in elicited leaves of watercress (*Nasturtium officinale*).

<table>
<thead>
<tr>
<th>Metabolites detected in leaf extracts</th>
<th>% of Deuterium (Conc., μmol/100 g)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2,3,4,5,6-D_5]Phenylalanine</td>
<td>52 ± 14b (369 ± 147)</td>
</tr>
<tr>
<td>Gluconasturtiin (8)</td>
<td>NIc (467 ± 132)</td>
</tr>
<tr>
<td>Nasturlexin B (2)</td>
<td>NIc (8 ± 6)</td>
</tr>
<tr>
<td>[2,3,5,6-D_4]Tridentatol C (3)</td>
<td>NIc (≤2)</td>
</tr>
<tr>
<td>Cyclonasturlexin (4)</td>
<td>NIc (≤5)</td>
</tr>
</tbody>
</table>

a Conc. = total concentration of natural abundance and labelled metabolites (nmol/g of fresh tissue, quantified by HPLC-DAD); values represent the mean and standard deviation of triplicate samples.

b Isotope incorporations calculated from HPLC-ESI-MS (peak intensities in positive mode); % of incorporation = $\{[M + 1 + n]^+ /[M + 1]^+ + [M + 1 + n]^+]\} \times 100$, where n = number of D atoms; values represent the mean and standard deviation of triplicate samples.

c NI = no incorporation means D% ≤ 0.1, ESI-MS.
Table S5. Metabolism of [D\textsubscript{3}C-S 4,5,6,7-D\textsubscript{4}]brassinin (5a) in elicited and non-elicited leaves of watercress (Nasturtium officinale).

<table>
<thead>
<tr>
<th>Metabolites</th>
<th>Elicited leaves</th>
<th>Non-elicited leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of Deuterium</td>
<td>% of Deuterium</td>
</tr>
<tr>
<td></td>
<td>(Conc., µmol/100 g)a</td>
<td>(Conc., µmol/100 g)a</td>
</tr>
<tr>
<td>[D\textsubscript{3}CS, 4,5,6,7-D\textsubscript{4}]Brassinin (5a)</td>
<td>≥ 97b (9 ± 6)</td>
<td>≥ 97b (39 ± 8)</td>
</tr>
<tr>
<td>[D\textsubscript{3}SC, 5,6,7-D\textsubscript{3}]Cyclonasturlexin (4b)</td>
<td>62 ± 17b (74 ± 26)</td>
<td>96 ± 3b (≤ 5)</td>
</tr>
</tbody>
</table>

a Conc. = total concentration of non-labelled and labelled metabolites (nmol/g of fresh tissue, quantified by HPLC-DAD). Values represent the mean and standard deviation of triplicate samples.

b Isotope incorporations calculated from HPLC-ESI-MS (peak intensities in positive mode); % of incorporation = \(\frac{([M + 1 + n])}{([M + 1] + [M + 1 + n])} \times 100\), where \(n\) = number of D atoms, values represent the mean and S.D. of triplicate samples.

Experimental

Synthesis of new compounds

[2,3,4,5,6,7,8-D\textsubscript{7}]-(E)-Styryl glucosinolate (18a)

![Diagram of the synthesis of [2,3,4,5,6,7,8-D\textsubscript{7}]-**(E)-Styryl glucosinolate (18a).](image)

Scheme S1. Synthesis of [2,3,4,5,6,7,8-D\textsubscript{7}]-**(E)-Styryl glucosinolate (18a).

A suspension of LiAlH\textsubscript{4} in dry THF (0.75 mL) was added dropwise to a solution of \textit{trans-}[2,3,4,5,6,7,8-D\textsubscript{7}]cinnamic acid (42a, 98\%D, 150 mg, 0.97 mmol) in dry THF (0.75 mL) at 0 °C.1 After stirring at rt for 30 min, the reaction mixture was added dropwise to a vigorously stirred suspension of PCC (420 mg,
1.94 mmol) in dry DCM (2.5 mL). The mixture was stirred for 2 h and filtered through celite. The filtrate was concentrated and fractionated by FCC (EtOAc-hexane, 1:9) to give trans-[2,3,4,5,6,7,8-D7]cinnamaldehyde (43a) (55 mg, 0.40 mmol, 41%). A solution of NH2OH-HCl (27 mg, 0.38 mmol) and NaOAc (31 mg, 0.38 mmol) in H2O (1.0 mL) was added to a solution aldehyde 43a (35 mg, 0.25 mmol) in EtOH (1.0 mL) at rt. After stirring for 1 h, the mixture was concentrated, diluted with H2O and extracted with EtOAc. The organic extract was dried over Na2SO4 and concentrated to give oxime 44a (39 mg, 0.25 mmol, 100%). NCS (68 mg, 0.51 mmol) was added in portions to a solution of oxime 44a (39 mg, 0.25 mmol) and pyridine (0.10 mL) in DCM (1.0 mL) at 0 °C. After stirring at rt for 30 min, a solution of 1-β-D-thioglucose tetraacetate (82 mg, 0.22 mmol) and Et3N (105 µL, 0.75 mmol) in DCM (1.0 mL) was added and stirring was continued for 4 h. The mixture was diluted with 1 M H2SO4 and extracted with DCM. The organic extract was washed with EtOH (1.0 mL) at rt. After stirring for 1 h, the mixture was concentrated, diluted with MeOH and extracted with EtOAc. The organic extract was dried over Na2SO4 and concentrated to give thioglucoame 45b (101 mg, 0.20 mmol, 91%) as a yellowish solid.

Compound 45a: ¹H NMR (500 MHz, CDCl₃): δ 8.06 (1H, s), 5.22 (1H, t, J = 9.0 Hz), 5.15-5.08 (2H, m), 5.05 (1H, d, J = 10.0 Hz), 4.25 (1H, dd, J = 12.0, 5.5 Hz), 4.12 (1H, dd, J = 12.0, 2.0 Hz), 3.74-3.72 (1H, m), 2.06 (3H, s), 2.02 (4H, m). HR-ESI-MS m/z [M + H]+: calc. for C₂₃H₂₧O₂N₄O₆S₂: 517.1868, found 517.1880 (28%), 331.10 (100%). PySO₃ (80 mg, 0.60 mmol) was added to a solution of thioglucoame 45a (64 mg, 0.12 mmol) in dry DCM (3.0 mL) and the mixture was stirred for 40 °C for 18 h. Solvent was concentrated, H₂O was added, and the mixture was extracted with MeOH-CHCl₃ (1:4). The organic extract was dried over Na₂SO₄, concentrated and separated by FCC (MeOH-DCM, 1:9) to give compound 46a (64 mg, 0.11 mmol, 89%) as a solid.

Compound 46a: ¹H NMR (500 MHz, CD₂OD): δ 5.40-5.34 (2H, m), 5.09-5.04 (2H, m), 4.25 (1H, dd, J = 12.5, 6.0 Hz), 4.12 (1H, dd, J = 12.5, 2.0 Hz), 4.02-3.98 (1H, m), 2.04 (3H, s), 2.01 (3H, s), 1.97 (3H, s), 1.92 (3H, s). HR-ESI-MS m/z [M-H]: calc. for C₂₃H₂₧O₂N₄O₆S₂: 595.1279, found 595.1301 (100%). K₂CO₃ (28 mg, 0.20 mmol) was added to a solution of 46a (40 mg, 0.067 mmol) in MeOH (2.0 mL) at rt. After stirring for 1 h, the mixture was neutralized with acetic acid (ca. 1 drop) and filtered. The filtrate was concentrated to give [2,3,4,5,6,7,8-D7]-{(E)-styryl glucosinolate (18a) in a quantitative yield. The spectroscopic data of the non-labelled compound 18 was in agreement with reported literature.²

Compound 18a: HPLC tᵣ = 12.1 min (method B). ¹H NMR (500 MHz, D₂O): δ 5.04 (1H, d, J = 9.5 Hz), 3.88 (1H, dd, J = 12.5, 2.0 Hz), 3.70 (1H, dd, J = 12.5, 5.0 Hz), 3.56-3.44 (4H, m). ¹³C NMR (125 MHz, D₂O): δ 161.1, 134.6, 82.7, 80.5, 77.1, 72.0, 69.2, 60.6. HR-ESI-MS m/z [M-K]: calc. for C₁₅H₁₈O₂N₂S₂: 427.0857, found 427.0868 (100%). UV (HPLC, CH₃CN–H₂O) λₘₐₓ (nm): 220, 280.
[D$_3$CS]Methyl [2,3,4,5,6-D$_5$]-2-hydroxy-2-phenylethyl)dithiocarbamate (21a)

Scheme S2. Synthesis of [D$_3$CS]Methyl [2,3,4,5,6-D$_5$]-2-hydroxy-2-phenylethyl)dithiocarbamate (21a)

Compound 47a was synthesized as previously reported.3 CS$_2$ (9 µL, 0.15 mmol) was added to a solution of 47a (20 mg, 0.14 mmol) in pyridine (0.50 mL) at 0 °C, followed by Et$_3$N (60 µL, 0.42 mmol). After stirring for 15 min, CD$_3$I (9 µL, 0.15 mmol) was added and stirring was continued for 30 min. The mixture was diluted with EtOAc and washed with 1 M H$_2$SO$_4$. The organic extract was dried over Na$_2$SO$_4$ and concentrated to give compound 21a (30 mg, 0.13 mmol, 93%, D ≥ 99%, determined by HR-FD-MS).

Compound 21a: HPLC $t_R = 12.4$ min (method A). 1H NMR (600 MHz, CDCl$_3$): δ 7.48 (1H, br), 5.05 (1H, dd, $J = 8.5$, 3.5 Hz), 4.36-4.32 (1H, m), 3.68-3.63 (1H, m), 2.52 (1H, br), and a rotamer at 8.15 (br), 4.98 (br), 3.78 (br), 3.54 (br). HR-FD-MS m/z: calc. for C$_{10}$H$_{12}$H$_8$NOS$_2$: 235.0941, found 235.0934. UV (HPLC, CH$_3$CN – H$_2$O) λ_{max} (nm): 250, 270.

Compound 21: HPLC $t_R = 12.4$ min (method A). 1H NMR (600 MHz, CDCl$_3$): δ 7.56 (1H, br), 7.40-7.31 (5H, m), 5.04 (1H, dd, $J = 9.0$, 3.5 Hz), 4.34-4.30 (1H, m), 3.67-3.63 (1H, m), 2.67 (1H, s), 2.63 (3H, s), and a rotamer at 8.23 (br), 4.96 (br), 3.77 (br), 3.53 (br). 13C NMR (150 MHz, CDCl$_3$): δ 200.4, 141.2, 128.9, 128.5, 126.0, 72.5, 53.9, 18.5. HR-FD-MS m/z: calc. for C$_{10}$H$_{13}$NOS$_2$: 227.0439, found 227.0441. UV (HPLC, CH$_3$CN – H$_2$O) λ_{max} (nm): 250, 270.

[D$_3$CS]Dihydronasturlexin D (26c)

Scheme S3. Synthesis of [D$_3$CS]dihydronasturlexin D (26c)
A solution of SOCl₂ (362 µL, 5.0 mmol) and DMF (10 µL) in CHCl₃ (1.0 mL) was added dropwise to a suspension of norphenylephrine hydrochloride (48) (95 mg, 0.50 mmol) in CHCl₃ (2.0 mL) at rt. After stirring for 24 h, solvent was removed and the mixture was washed with Et₂O and concentrated to give compound 49. CS₂ (60 µL, 1.0 mmol) was added to a suspension of 49 in CHCl₃ (3.0 mL) at rt, followed by Et₃N (210 µL, 1.5 mmol). After stirring for 15 min, CD₃I (60 µL, 1.0 mmol) was added and stirring was continued for 1 h. H₂O was added and the mixture was extracted with CHCl₃. The organic extract was dried over Na₂SO₄, concentrated and separated by FCC (EtOAc-hexane, 1:3) to give compound [D₃CS]Dihydronasturlexin D (26c) (52 mg, 0.23 mmol, 46%; D ≥ 99%, determined by HR-FD-MS) as a solid.

Compound 26c: HPLC tᵣ = 11.5 min (method A). ¹H NMR (600 MHz, CD₃CN): δ 7.15 (1H, t, J = 8.0 Hz), 6.79 (1H, d, J = 8.0 Hz), 6.75 (1H, t, J = 2.0 Hz), 6.72-6.70 (1H, m), 5.08 (1H, dd, J = 8.5, 5.0 Hz), 4.44 (1H, dd, J = 15.0, 8.5 Hz), 4.29 (1H, dd, J = 15.0, 5.0 Hz). HR-FD-MS m/z [M]⁺ calc. for C₁₀H₈D₃NOS₂: 228.0470, found 228.0461 (100%). UV (HPLC, CH₃CN-H₂O) λ_max (nm): 220, 280.

Compound 26: HPLC tᵣ = 11.5 min (method A). ¹H NMR (600 MHz, CD₃CN): δ 7.16 (1H, t, J = 8.0 Hz), 6.79 (1H, d, J = 8.0 Hz), 6.75 (1H, s), 6.72-6.70 (1H, m), 5.09 (1H, dd, J = 8.5, 5.5 Hz), 4.45 (1H, dd, J = 15.0, 8.5 Hz), 4.30 (1H, dd, J = 15.0, 5.0 Hz), 2.55 (3H, s). ¹³C NMR (150 MHz, CD₃CN): δ 166.1, 158.6, 144.8, 131.4, 119.7, 116.1, 115.0, 73.0, 57.4, 16.0. HR-FD-MS m/z [M]⁺ calc. for C₁₀H₁₁NOS₂: 225.0282, found 225.0277 (100%). UV (HPLC, CH₃CN-H₂O) λ_max (nm): 220, 280.
ESI-MS spectra of incorporation experiments in upland cress (*Barbarea verna*)

Incorporation of [2,3,4,5,6-D₅]gluconasturtiin (8a)

[2,3,4,5,6-D₅]Nasturlexin C (11a): HR-ESI-MS *m/z* [M + H]⁺, calculated for C₁₀H₅₂H₂N₂S₂, 213.0569, found 213.0578.

[2,3,5,6-D₄]Nasturlexin D (13b): HR-ESI-MS *m/z* [M + H]⁺, calculated for C₁₀H₆₂H₄NOS₂, 228.0455, found 228.0459.

Figure S1 ESI-MS spectra (positive mode) of nasturlexins C (11/11a) and D (13/13b) in extracts of elicited leaves (A and B) fed with [2,3,4,5,6-D₅]gluconasturtiin (8a) and control leaves.
Incorporation of [2,4,6-D$_3$,15N]-3-hydroxygluconasturtiin (9a)

[2,4,6-D$_3$,15N]Dihyronasturlexin D (26a): HR-ESI-MS m/z [M + H]$^+$, calculated for C$_{10}$H$_9$D$_3$H$_3$15NS$_2$: 230.0519, found 230.0512.

[2,4,6-D$_3$,15N]Nasturlexin D (13a): HR-ESI-MS m/z [M + H]$^+$, calculated for C$_{10}$H$_7$D$_3$15NS$_2$: 228.0362, found 228.0355.
Figure S2 ESI-MS spectra (positive mode) of 3-hydroxyphenylethyl isothiocyanate (24/24a), dihydronasturlexin D (26/26a), and nasturlexin D (13/13a) in extracts of elicited leaves (A, B and C) fed with [2,4,6-D₃,¹⁵N]-3-hydroxyphenylethyl glucosinolate (9a) and control leaves.

Incorporation of [2,3,4,5,6-D₅]phenylethyl isothiocyanate (19a)

[2,3,4,5,6-D₅]Nasturlexin C (11a): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₅₂H₅NS₂, 213.0569, found 213.0557.

[2,3,5,6-D₄]Nasturlexin D (13b): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₆₂H₆NOS₂, 228.0455, found 228.0446.
Figure S3 ESI-MS spectra (positive mode) of dihydrornasturlexin C (23/23a), nasturlexins C (11/11a) and D (13/13b) in extracts of elicited leaves (A, B and C) fed with [2,3,4,5,6-D₅]phenylethyl isothiocyanate (19a) and control leaves.
Incorporation of [2,4,6-D_3,^{15}N]-3-hydroxyphenylethyl isothiocyanate (24a)

[2,4,6-D_3,^{15}N]Dihydronasturlexin D (26a): HR-ESI-MS m/z [M + H]^+, calculated for C_{10}H_{12}H_{3}^{15}NS_{2}, 230.0519, found 230.0536.

[2,4,6-D_3,^{15}N]Nasturlexin D (13a): HR-ESI-MS m/z [M + H]^+, calculated for C_{10}H_{7}H_{3}^{15}NS_{2}, 228.0362, found 228.0399.

Figure S4 ESI-MS spectra (positive mode) of dihydronasturlexin D (26/26a) and nasturlexin D (13/13a) in extracts of elicited leaves (A and B) fed with [2,4,6-D_3,^{15}N]-3-hydroxyphenylethyl isothiocyanate (24a) and control leaves.
[2,3,4,5,6-D_5]Dihyronasturlexin C (23a): HR-ESI-MS m/z [M + H]^+, calculated for C_{10}H_{7}H_2NS_2, 215.0725, found 215.0737.

[2,3,4,5,6-D_5]Nasturlexin C (11a): HR-ESI-MS m/z [M + H]^+, calculated for C_{10}H_5H_5NS_2, 213.0569, found 213.0557.

[2,3,5,6-D_4]Nasturlexin D (13b): HR-ESI-MS m/z [M + H]^+, calculated for C_{10}H_6^2H_4NOS_2, 228.0455, found 228.0446.

Intensity

<table>
<thead>
<tr>
<th>A</th>
<th>A-control</th>
</tr>
</thead>
<tbody>
<tr>
<td>210.1</td>
<td>23+23a</td>
</tr>
<tr>
<td>211.0</td>
<td>212.1</td>
</tr>
<tr>
<td>215.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>B-control</th>
</tr>
</thead>
<tbody>
<tr>
<td>208.1</td>
<td>11+11a</td>
</tr>
<tr>
<td>209.1</td>
<td>210.1</td>
</tr>
<tr>
<td>213.1</td>
<td></td>
</tr>
</tbody>
</table>
Figure S5 ESI-MS spectra (positive mode) of dihydronasturlexin C (23/23a), nasturlexins C (11/11a) and D (13/13b) in extracts of elicited leaves (A, B and C) fed with [2,3,4,5,6-D$_5$]nasturlexin A (1a) and control leaves.

Incorporation of [D$_3$CS, 2,4,6-D$_3$,15N]-3-hydroxynasturlexin A (25b)

[D$_3$CS, 2,4,6-D$_3$,15N]Dihydronasturlexin D (26b): HR-ESI-MS m/z [M + H]$^+$, calculated for C$_{10}$H$_6^2$H$_6^{15}$NS$_2$, 233.0707, found 233.0698.

[D$_3$CS, 2,4,6-D$_3$,15N]Nasturlexin D (13c): HR-ESI-MS m/z [M + H]$^+$, calculated for C$_{10}$H$_4^2$H$_6^{15}$NS$_2$, 231.0551, found 231.0538.
Figure S6 ESI-MS spectra (positive mode) of dihydronasturlexin D (26/26b) and nasturlexin D (13/13c) in extracts of elicited leaves (A and B) fed with [D$_3$CS, 2,4,6-D$_3$,15N]-3-hydroxynasturlexin A (25b) and control leaves.

Incorporation of methyl [2,3,4,5,6-D$_5$]-(E)-styryl dithiocarbamate (22a)

[2,3,4,5,6-D$_5$]Nasturlexin C (11a): GC-FI-MS m/z [M]$^+$, calculated for C$_{10}$H$_9$H$_2$NS$_2$, 212.0490, found 212.0487.
Figure S7 ESI-MS spectra (positive mode) of nasturlexin C (11/11a) in extracts of elicited leaves (A) fed with methyl [2,3,4,5,6-D$_5$]-(E)-styryl dithiocarbamate (22a) and control leaves.

Incorporation of [2,3,4,5,6-D$_5$]dihyronasturlexin C (23a)

[2,3,4,5,6-D$_5$]Nasturlexin C (11a): HR-ESI-MS m/z [M + H]$^+$, calculated for C$_{10}$H$_7$H$_5$NS$_2$, 213.0569, found 213.0567.

[2,3,4,5,6-D$_5$]Nasturlexin C sulfoxide (12a): HR-ESI-MS m/z [M + H]$^+$, calculated for C$_{10}$H$_7$H$_5$NOS$_2$, 229.0533, found 229.0546.

[2,3,5,6-D$_4$]Nasturlexin D (13b): HR-ESI-MS m/z [M + H]$^+$, calculated for C$_{10}$H$_6$H$_4$NOS$_2$, 228.0455, found 228.0443.
Figure S8 ESI-MS spectra (positive mode) of nasturlexins C (11/11a), C sulfoxide (12/12a), and D (13/13b) in extracts of elicited leaves (A, B, and C) fed with [2,3,4,5,6-D5]dihydonasturlexin C (23a) and control leaves.
Incorporation of \([\text{D}_3\text{CS}]\text{dihydrornasturlexin D (26c)}\)

\([\text{D}_3\text{CS}]\text{Nasturlexin D (13d): HR-ESI-MS } m/z [M + H]^+, \text{ calculated for } C_{10}H_7^2H_3NOS_2, 227.0392, \text{ found } 227.0389.\]

Figure S9 ESI-MS spectra (positive mode) of nasturlexin D (13/13d) in extracts of elicited leaves (A) fed with \([\text{D}_3\text{CS}]\text{dihydrornasturlexin D (26c)}\) and control leaves.

Incorporation of \([2,3,4,5,6-\text{D}_5]\text{nasturlexin C (11a)}\)

\([2,3,4,5,6-\text{D}_5]\text{Nasturlexin C sulfoxide (12a): HR-ESI-MS } m/z [M + H]^+, \text{ calculated for } C_{10}H_7^2H_3NOS_2, 229.0533, \text{ found } 229.0540.\]

\([2,3,5,6-\text{D}_4]\text{Nasturlexin D (13b): HR-ESI-MS } m/z [M + H]^+, \text{ calculated for } C_{10}H_6^2H_4NOS_2, 228.0455, \text{ found } 228.0460.\]
Figure S10 ESI-MS spectra (positive mode) of nasturlexin C sulfoxide (12/12a) and nasturlexin D (13/13b) in extracts of elicited leaves (A and B) fed with [2,3,4,5,6-D₅]nasturlexin C (11a) and control leaves.

ESI-MS spectra of incorporation experiments in watercress (*Nasturtium officinale*)

Incorporation of [D₃CS 4,5,6,7-D₄]brassinin (5a)

[D₃CS 4,5,6,7-D₄]cyclonasturlexin (4a): HR-ESI-MS \(m/z \) \([M + H]^+\), calculated for C₁₁H₅₅H₆N₂S₂, 241.0735, found 241.0739.
Figure S11 ESI-MS spectra (positive mode) of cyclonasturlexin (4/4a) in extracts of elicited leaves (A) fed with [D₃CS 4,5,6,7-D₄]brassinin (5a) and control leaves.

Incorporation of [2,3,4,5,6-D₅]gluconasturtiin (8a)

[2,3,5,6-D₄]Tridentatol C (3a): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₆₂H₄NOS₂, 228.0449, found 228.0459.
Figure S12 ESI-MS spectra (positive mode) of nasturlexin B (2/2a) and tridentatol C (3/3a) in extracts of elicited leaves (A and B) fed with [2,3,4,5,6-D$_5$]gluconasturtiin (8a) and control leaves.

References

NMR spectra of new compounds 18a, 21, 21a, 26 and 26a
Compound 18a - 1H NMR Spectrum

D$_2$O
Compound 21a - 1H NMR Spectrum

CDCl$_3$
Compound 21 - 13C NMR Spectrum

CDCl$_3$
Compound 26c - 1H NMR Spectrum

CD$_3$CN
Compound 26 - 1H NMR Spectrum

CD$_3$CN
Compound 26 - 13C NMR Spectrum

CD$_3$CN