Supporting Information

For
The Synthesis of Multi-substituted Pyrrolidinones via a Direct [3+2] Cycloaddition of Azaoxyallyl Cations with Aromatic Ethylenes

Yixin Zhang, Haojie Ma, Xingxing Liu, Xinfeng Cui, Shaohua Wang, Zhenzhen Zhan, Jinghong Pu, and Guosheng Huang*
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China. E-mail: hgs@lzu.edu.cn

List of Contents
1. General Information .. 2
2. Experimental Procedure .. 2
3. References .. 4
4. X-Ray Ellipsoid Plots of 3a .. 4
5. NMR Spectra Data of the Products ... 4
1. General Information

All reactions were carried out in anhydrous solvents under argon atmosphere and monitored by TLC on gel F254 plates. The 300 MHz 1H NMR spectra were obtained on Bruker JNM ECS 300 MHz instrument, 400 MHz 1H NMR and 100 MHz 13C NMR spectra data were obtained on Bruker Ax-400 MHz instrument, both in CDCl$_3$ ($\delta = 77.00$ ppm) solution. Unless specified, chemical shifts (δ) are reported in ppm using TMS (tetramethylsilane) as internal standard. High-resolution mass spectral analysis (HRMS) data were measured on the ESI Bruker Apex II. IR spectra data were recorded on a Nicolet FT-170SX spectrometer.

2. Experimental Procedure

2.1 Synthesis of α-halo hydroxamates.

$$
\begin{align*}
\text{R}^1\text{R}^2\text{Br} & \quad + \quad \text{R}^2\text{ONH}_2\cdot\text{HCl} & \quad \text{Et}_3\text{N} & \quad \text{DCM, 0 }^\circ\text{C} \\
\text{x} & \quad = \quad \text{Br, Cl} & & \\
\text{R}^1\text{R}^2\text{OH} & \quad \text{NOR}^3
\end{align*}
$$

The substrates of α-halo hydroxamates were prepared according to literature procedures.1

![Image 1a](image1a)

1H NMR (300 MHz, CDCl$_3$): δ 8.87 (s, 1H), 7.49 - 7.33 (m, 5H), 4.93 (s, 2H), 4.28 (d, $J = 6.4$ Hz, 1H), 1.93 - 1.73 (m, 3H).

![Image 1b](image1b)
\[^1\text{H} \text{NMR} \ (300 \text{ MHz, CDCl}_3) \]: \(\delta \ 9.78 \text{ (s, 1H)}, \ 7.38 - 7.34 \text{ (m, 5H)}, \ 4.94 - 4.90 \text{ (m, 2H)}, \ 4.16 - 4.11 \text{ (m, 1H)}, \ 2.01 \text{ (tdd, } J = 21.7, 14.5, 7.1 \text{ Hz, 2H)}, \ 0.95 \text{ (t, } J = 7.1 \text{ Hz, 3H}).

\(\text{Cl} \)
\(\text{O} \)
\(\text{N} \)
\(\text{OBn} \)

\(1c \)

\[^1\text{H} \text{NMR} \ (300 \text{ MHz, CDCl}_3) \]: \(\delta \ 10.48 \text{ (s, 1H)}, \ 7.37 - 7.27 \text{ (m, 5H)}, \ 6.02 \text{ (s, 1H)}, \ 4.92 \text{ (s, 2H)}.

\(\text{MeMe} \)
\(\text{O} \)
\(\text{N} \)
\(\text{OBn} \)

\(1d \)

\[^1\text{H} \text{NMR} \ (300 \text{ MHz, CDCl}_3) \]: \(\delta \ 9.06 \text{ (s, 1H)}, \ 7.44 - 7.38 \text{ (m, 5H)}, \ 4.95 \text{ (s, 2H)}, \ 1.94 \text{ (s, 6H)}.

\(\text{Me} \)
\(\text{O} \)
\(\text{N} \)
\(\text{OBu} \)

\(1e \)

\[^1\text{H} \text{NMR} \ (300 \text{ MHz, CDCl}_3) \]: \(\delta \ 10.25 \text{ (s, 1H)}, \ 4.57 \text{ (q, } J = 6.8 \text{ Hz, 1H)}, \ 1.73 \text{ (d, } J = 6.8 \text{ Hz, 3H)}, \ 1.22 \text{ (s, 9H)}.

\(\text{Me} \)
\(\text{O} \)
\(\text{N} \)
\(\text{OBn} \)

\(1f \)

\[^1\text{H} \text{NMR} \ (300 \text{ MHz, CDCl}_3) \]: \(\delta \ 9.87 \text{ (s, 1H)}, \ 7.39 - 7.33 \text{ (m, 5H)}, \ 4.89 \text{ (s, 2H)}, \ 4.33 \text{ (q, } J = 6.9 \text{ Hz, 1H)}, \ 1.62 \text{ (d, } J = 6.9 \text{ Hz, 3H)}.

2.2 General procedure of synthesis of pyrrolidinones.

\[\begin{align*}
\text{R}_1 \text{R}_2 \text{O} &+ \text{R}_3 \text{R}_4 \text{N} & & \text{Base (2.0 equiv)} \\
\text{X} & & \text{Solvent, temp.} & \rightarrow \\
\text{3} & & \\
\end{align*} \]
To a solution of α-halo hydroxamates (0.2 mmol) in dry HFIP was added Et₃N (0.4 mmol) and styrenes (0.4 mmol) at 50 °C. The reaction was monitored by TLC. After the α-halo hydroxamates consumed completely, the solvent was evaporated under vacuum and flash column chromatography using petrol ether and acetone (v/v = 10 : 1) as eluent provided the desired products.

3. References

4. X- Ray Ellipsoid Plots of 3a (CCDC 1836255).

5. NMR Spectra Data of the Products

(3S,5S)-1-(benzyloxy)-3-methyl-5-phenylpyrrolidin-2-one
White solid (mᵣ = 37 mg, 66%, d.r. = 7.2 : 1), (mᵣ = 35 mg, 62%, d.r. = 5.5 : 1); m.p.: 74.9 - 76.1 °C; ¹H NMR (400 MHz,) δ 7.37 (m, 5H), 7.30 - 7.23 (m, 3H), 7.22 - 7.11 (m, 2H), 5.06
(d, J = 10.0 Hz, 1H), 4.58 (d, J = 10.0 Hz, 1H), 4.44 - 4.35 (m, 1H), 2.65 - 2.43 (m, 2H), 1.68 - 1.59 (m, 1H), 1.32 (d, J = 6.8 Hz, 3H).

White solid (mb = 35 mg, 62%, d.r. = 5.5 : 1); 1H NMR (400 MHz, CDCl\textsubscript{3}, ppm): δ 7.37 (m, 5H), 7.29 - 7.23 (m, 3H), 7.21 - 7.10 (m, 2H), 5.05 (d, J = 10.0 Hz, 1H), 4.57 (d, J = 10.0 Hz, 1H), 4.40 (dd, J = 9.1, 6.6 Hz, 1H), 2.65 - 2.43 (m, 2H), 1.68 - 1.58 (m, 1H), 1.32 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}, ppm): δ 174.7, 139.32, 134.98, 129.39, 128.68, 128.59, 128.46, 128.39, 128.28, 127.44, 126.78, 126.50, 77.39, 61.95, 60.80, 35.28, 34.09, 16.43; IR ν (cm-1): 3033, 2932, 2849, 1713, 1604, 1496, 1456, 1369, 1124, 731, 699; HRMS ESI Calcd for C\textsubscript{18}H\textsubscript{19}NO\textsubscript{2} [M+Na]+: 304.1313, Found: 304.1310.

aThe reaction was carried out X = Br. bThe reaction was carried out X = Cl.

3b

(3S,5S)-1-(benzyloxy)-5-(4-fluorophenyl)-3-methylpyrrolidin-2-one

White solid (m = 37 mg, 62%, d.r. = 12.5 : 1); m.p.: 61.2 - 62.0 °C; 1H NMR (400 MHz, CDCl\textsubscript{3}, ppm): δ 7.30 - 7.25 (m, 5H), 7.15 - 7.13 (m, 2H), 7.06 (dd, J = 14.7, 6.1 Hz, 2H), 5.04 (d, J = 10.5, 1H), 4.59 (d, J = 10.1 Hz, 1H), 4.36 (dd, J = 9.2, 6.5 Hz, 1H), 2.61 - 2.42 (m, 2H), 1.57 (m, 1H), 1.31 (d, J = 6.7 Hz, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}, ppm): δ 174.70, 162.59 (d, J = 246.9 Hz), 163.808, 134.95 (d, J = 3.2 Hz), 134.90, 129.49, 129.38, 129.08 (d, J = 8.3 Hz), 128.69, 128.40, 128.34, 115.62 (d, J = 21.6 Hz), 77.41, 61.26, 35.36, 34.06, 16.38; IR ν (cm-1): 3034, 2932, 2850, 1711, 1607, 1512, 1367, 1124, 836, 732, 698; HRMS ESI Calcd for C\textsubscript{18}H\textsubscript{18}FNO\textsubscript{2} [M+Na]+: 322.1219, Found: 322.1210.
(3S,5S)-1-(benzoyloxy)-5-(4-chlorophenyl)-3-methylpyrrolidin-2-one

White solid (m = 37 mg, 58%, d.r. = 11.1 : 1); m.p.: 96.1 - 97.9 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.36 - 7.25 (m, 5H), 7.23 - 7.19 (m, 2H), 7.16 (dd, J = 7.8, 1.6 Hz, 2H), 5.07 - 5.03 (d, J = 10.3 Hz, 1H), 4.63 (d, J = 10.2 Hz, 1H), 4.33 (dd, J = 9.1, 6.7 Hz, 1H), 2.50 (m, 2H), 1.59 - 1.50 (m, 1H), 1.33 - 1.28 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.72, 137.85, 134.90, 134.04, 129.38, 128.92, 128.85, 128.70, 128.68, 128.42, 128.36, 127.82, 61.30, 35.30, 34.02, 16.51; IR ν (cm$^{-1}$): 3033, 2969, 2932, 2876, 1712, 1594, 1489, 1454, 1366, 1124, 827, 732, 699; HRMS ESI Calcd for C$_{18}$H$_{16}$ClNO$_2$ [M+Na]$^+$: 338.0924, Found: 338.0918.

(3S,5S)-1-(benzoyloxy)-5-(4-bromophenyl)-3-methylpyrrolidin-2-one

Colourless oil (m = 36 mg, 50%, d.r. > 20 : 1); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.49 (d, J = 8.4 Hz, 2H), 7.30 - 7.26 (m, 3H), 7.17 - 7.13 (m, 4H), 5.05 (d, J = 10.2 Hz, 1H), 4.63 (d, J = 10.2 Hz, 1H), 4.31 (dd, J = 9.1, 6.6 Hz, 1H), 2.50 (m, 2H), 1.58 - 1.49 (m, 1H), 1.30 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.74, 138.41, 134.92, 131.81, 131.49, 129.40, 129.00, 128.71, 128.38, 122.18, 122.02, 77.40, 61.38, 35.28, 34.02, 16.40; IR ν (cm$^{-1}$): 3033, 2969, 2932, 2876, 1712, 1594, 1489, 1454, 1377, 1124, 837, 823, 732, 699, 553; HRMS ESI Calcd for C$_{18}$H$_{18}$BrNO$_2$ [M+Na]$^+$: 382.0419, Found: 382.0413.
(3S,5S)-1-(benzyloxy)-3-methyl-5-(p-tolyl)pyrrolidin-2-one

White solid (m = 34 mg, 58%, d.r. = 11.4 : 1); m.p.: 87.3 - 90.1 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 7.34 - 7.28 (m, 3H), 7.27 - 7.18 (m, 4H), 7.16 - 7.13 (m, 2H), 5.04 (d, J = 10.0 Hz, 1H), 4.56 (d, J = 10.0 Hz, 1H), 4.35 (dd, J = 9.1, 6.7 Hz, 1H), 2.55 - 2.44 (m, 2H), 2.38 (s, 3H), 1.62 - 1.59 (m, 1H), 1.31 (d, J = 6.7 Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta\) 174.63, 138.19, 136.19, 135.02, 129.40, 129.34, 128.56, 128.26, 127.38, 77.39, 61.68, 35.25, 34.07, 21.18, 16.42; IR v (cm\(^{-1}\)): 3032, 2968, 2930, 2875, 2850, 1716, 1616, 1498, 1454, 1367, 1124, 844, 731, 698; HRMS ESI Calcd for C\(_{19}\)H\(_{21}\)NO\(_2\) [M+Na]\(^+\): 318.1470, Found: 318.1464.

(3S,5S)-1-(benzyloxy)-5-(4-(tert-butyl)phenyl)-3-methylpyrrolidin-2-one

White solid (m = 43 mg, 64%, d.r. > 20 : 1); m.p.: 93.1 - 97.6 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 7.42 - 7.40 (m, 2H), 7.28 - 7.21 (m, 5H), 7.06 (dd, J = 7.8, 1.5 Hz, 2H), 5.07 (d, J = 10.0 Hz, 1H), 4.54 (d, J = 9.9 Hz, 1H), 4.38 (dd, J = 9.2, 6.6 Hz, 1H), 2.50 (m, 2H), 1.64 (m, 1H), 1.35 (s, 9H), 1.33 - 1.30 (d, J = 7.2 Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta\) 174.61, 151.47, 136.04, 134.96, 129.45, 128.56, 128.22, 127.24, 125.56, 77.48, 61.63, 35.10, 34.59, 34.10, 31.31, 16.41; IR v (cm\(^{-1}\)): 3032, 2963, 2872, 1719, 1614, 1512, 1454, 1418, 1363, 1127, 835, 699; HRMS ESI Calcd for C\(_{22}\)H\(_{27}\)NO\(_2\) [M+Na]\(^+\): 360.1939, Found: 360.1936.
3g

(3S,5S)-1-(benzxyloxy)-5-(4-methoxyphenyl)-3-methylpyrrolidin-2-one
Colourless oil (m = 40 mg, 64%, d.r. = 8.3 : 1); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.34 - 7.23 (m, 5H), 7.17 - 7.11 (m, 2H), 6.94 - 6.87 (m, 2H), 5.02 (d, J = 9.9 Hz, 1H), 4.54 (d, J = 9.9 Hz, 1H), 4.38 - 4.33 (m, 1H), 3.82 (s, 3H), 2.55 - 2.44 (m, 2H), 1.61 (qdd, J = 10.7, 8.6, 3.5 Hz, 1H), 1.32 - 1.30 (d, J = 6.9Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.62, 159.59, 135.00, 131.00, 129.40, 128.72, 128.57, 128.27, 113.98, 113.87, 77.38, 61.40, 55.31, 35.19, 34.09, 16.39; IR ν (cm$^{-1}$): 3032, 1715, 1612, 1514, 1454, 1368, 1248, 1225, 832, 730, 699; HRMS ESI Calcd for C$_{19}$H$_{21}$NO$_3$ [M+Na]$^+$: 334.1419, Found: 334.1424.

3h

(3S,5S)-1-(benzxyloxy)-5-(3-fluorophenyl)-3-methylpyrrolidin-2-one
Colourless oil (m = 26 mg, 43%, d.r. > 20 : 1); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.37 - 7.25 (m, 4H), 7.17 (dd, J = 7.6, 1.7 Hz, 2H), 7.10 - 6.97 (m, 3H), 5.08 (d, J = 10.1 Hz, 1H), 4.65 (d, J = 10.2 Hz, 1H), 4.35 (dd, J = 9.0, 6.7 Hz, 1H), 2.59 - 2.43 (m, 2H), 1.57 (m, 1H), 1.31 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.77, 162.89 (d, J = 246.8 Hz), 142.15, 134.90, 130.27 (d, J = 8.2 Hz), 129.41, 128.75, 128.37, 123.01 (d, J = 2.9 Hz), 115.32 (d, J = 21.1 Hz), 114.21 (d, J = 22.0 Hz), 77.33, 61.48, 35.22, 34.02, 16.42; IR ν (cm$^{-1}$): 3033, 2933, 2849, 1713, 1594, 1491, 1455, 1367, 1123, 731, 697; HRMS ESI Calcd for C$_{18}$H$_{18}$FNO$_2$ [M+Na]$^+$: 322.1219, Found: 322.1223.
3i

(3S,5S)-1-(benzyloxy)-5-(3-chlorophenyl)-3-methylpyrrolidin-2-one
White solid (m = 37 mg, 59%, d.r. > 20 : 1); m.p.: 83.8 - 86.1 °C; ^1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.33 - 7.25 (m, 6H), 7.19 - 7.15 (m, 3H), 5.07 (d, $J = 10.1$ Hz, 1H), 4.65 (d, $J = 10.2$ Hz, 1H), 4.32 (dd, $J = 9.0$, 6.7 Hz, 1H), 2.58 - 2.43 (m, 2H), 1.58 - 1.48 (m, 1H), 1.31 (d, $J = 6.8$ Hz, 3H); ^{13}C NMR (100 MHz, CDCl$_3$, ppm): δ 174.69, 141.53, 134.88, 134.54, 130.00, 129.43, 128.77, 128.52, 128.38, 127.50, 125.48, 125.40, 77.36, 61.45, 35.19, 34.02, 16.40; IR ν (cm$^{-1}$): 3032, 2970, 2933, 2875, 1715, 1454, 1124, 733, 698; HRMS ESI Calcd for C$_{18}$H$_{18}$ClNO$_2$ [M+Na]$^+$: 338.0924, Found: 338.0925.

3j

(3S,5S)-1-(benzyloxy)-5-(3-bromophenyl)-3-methylpyrrolidin-2-one
White solid (m = 28 mg, 39%, d.r. > 20 : 1); m.p.: 89.5 - 91.5 °C; ^1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.49 - 7.46 (m, 1H), 7.41 (s, 1H), 7.32 - 7.27 (m, 4H), 7.26 (m, 1H), 7.24 - 7.16 (m, 2H), 5.07 (d, $J = 10.1$ Hz, 1H), 4.64 (d, $J = 10.2$ Hz, 1H), 4.29 (dd, $J = 9.0$, 6.7 Hz, 1H), 2.57 - 2.43 (m, 2H), 1.56 (m, 1H), 1.31 (d, $J = 6.7$ Hz, 3H); ^{13}C NMR (100 MHz, CDCl$_3$, ppm): δ 174.66, 141.76, 134.87, 131.45, 130.44, 130.29, 129.44, 128.78, 128.39, 125.93, 122.68, 77.38, 61.40, 35.19, 34.02, 16.38; IR ν (cm$^{-1}$): 3032, 2967, 2930, 2874, 2850, 1716, 1454, 1123, 788, 733, 697; HRMS ESI Calcd for C$_{18}$H$_{18}$BrNO$_2$ [M+Na]$^+$: 382.0419, Found: 382.0417.
3k

(3S,5S)-1-(benzyloxy)-5-(2-chlorophenyl)-3-methylpyrrolidin-2-one
Colourless oil (m = 31 mg, 48%, d.r. = 11.1 : 1); 1H NMR (400 MHz, CDCl$_3$): δ 7.38 - 7.35 (m, 2H), 7.32 - 7.29 (m, 3H), 7.28 - 7.22 (m, 4H), 5.07 (d, J = 10.4 Hz, 1H), 4.88 (dd, J = 16.3, 8.9 Hz, 2H), 2.68 (ddd, J = 12.8, 9.2, 7.5 Hz, 1H), 2.55 - 2.44 (m, 1H), 1.48 - 1.41 (m, 1H), 1.23 (d, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.20, 137.36, 134.92, 132.83, 129.75, 129.29, 128.93, 128.75, 128.45, 127.63, 127.24, 76.35, 58.00, 33.73, 30. 16.80; IR ν (cm$^{-1}$): 3033, 2928, 2850, 1704, 1595, 1497, 1454, 1124, 733, 699; HRMS ESI Calcd for C$_{18}$H$_{18}$ClNO$_2$ [M+Na]$^+$: 338.0924, Found: 338.0923.

3l

(3S,5S)-1-(benzyloxy)-5-(2-bromophenyl)-3-methylpyrrolidin-2-one
Colourless oil (m = 29 mg, 40%, d.r. = 3.7 : 1); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.54 (m, 1H), 7.35 (m, 2H), 7.34 - 7.29 (m, 3H), 7.29 - 7.26 (m, 1H), 7.20 - 7.15 (m, 2H), 5.09 (d, J = 10.5 Hz, 1H), 5.03 (d, J = 11.1 Hz, 1H), 4.86 (dd, J = 15.4, 8.9 Hz, 2H), 2.73 - 2.65 (m, 1H), 2.55 - 2.45 (m, 1H), 1.41 (m, 1H), 1.24 (d, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.16, 139.45, 134.89, 133.00, 129.29, 129.24, 128.76, 128.47, 127.86, 127.70, 122.67, 76.78, 60.35, 33.85, 33.55, 16.83; IR ν (cm$^{-1}$): 3033, 2961, 2875, 2850, 1704, 1595, 1497, 1381, 1454, 1124, 732, 699, 541; HRMS ESI Calcd for C$_{18}$H$_{18}$BrNO$_2$ [M+Na]$^+$: 382.0419, Found: 382.0412.
3m

(3S,5S)-1-(benzyloxy)-3-methyl-5-(o-tolyl)pyrrolidin-2-one
White solid (m = 42 mg, 71%, d.r. = 5.9 : 1); m.p.: 90.6 - 92.0 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.34 (m, 2H), 7.31 - 7.24 (m, 4H), 7.22 (dd, J = 7.1, 1.7 Hz, 1H), 7.20 - 7.14 (m, 3H), 5.09 (d, J = 10.4 Hz, 1H), 4.71 (d, J = 10.3 Hz, 1H), 4.63 (t, J = 7.6 Hz, 1H), 2.59 - 2.44 (m, 2H), 2.21 (s, 3H), 1.53 - 1.45 (m, 1H), 1.28 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.38, 137.53, 135.65, 134.78, 130.76, 129.45, 129.32, 128.60, 128.37, 127.64, 126.41, 126.25, 125.98, 76.80, 57.86, 34.10, 33.82, 18.98, 16.64; IR ν (cm$^{-1}$): 3030, 2968, 2931, 2874, 1714, 1606, 1494, 1454, HRMS ESI Calcd for C$_{19}$H$_{21}$NO$_2$ [M+Na]$^+$: 318.1470, Found: 318.1477.

3n

(3S,5S)-5-(2-aminophenyl)-1-(benzyloxy)-3,5-dimethylpyrrolidin-2-one
Yellow oil (m = 40 mg, 65%, d.r. > 20 : 1); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 8.99 (s, 1H), 7.27 (dd, J = 8.4, 5.3 Hz, 5H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (dd, J = 7.4, 1.2 Hz, 1H), 6.79 (t, J = 7.3 Hz, 1H), 6.54 (d, J = 8.1 Hz, 1H), 5.28 (s, 1H), 4.95 - 4.79 (m, 3H), 4.17 (s, 1H), 3.82 (s, 1H), 1.97 (s, 3H), 1.47 (d, J = 6.9 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 170.92, 142.88, 134.70, 130.14, 129.30, 128.69, 128.49, 128.26, 128.38, 128.02, 127.99, 118.71, 116.17, 111.63, 78.25, 54.30, 34.02, 32.95, 24.13, 19.52; IR ν (cm$^{-1}$): 3032, 2973, 2934, 1663, 1600, 1507, 1452, 1372, 909, 747; HRMS ESI Calcd for C$_{19}$H$_{22}$N$_2$O$_2$ [M+Na]$^+$: 333.1573, Found:333.1578.
(3S,5S)-1-(benzyloxy)-3,5-dimethyl-5-(3-(trifluoromethyl)phenyl)pyrrolidin-2-one

Colourless oil (m = 35 mg, 47%, d.r. > 20 : 1); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.71 (s, 1H), 7.67 (d, $J = 7.9$ Hz, 1H), 7.57 (d, $J = 7.7$ Hz, 1H), 7.48 (t, $J = 7.8$ Hz, 1H), 7.26 (m, 3H), 7.19 (m, 2H), 5.09 (d, $J = 9.7$ Hz, 1H), 4.72 (d, $J = 9.7$ Hz, 1H), 2.67 - 2.57 (m, 1H), 2.39 (dd, $J = 12.8$, 9.3 Hz, 1H), 1.91 (dd, $J = 12.8$, 7.9 Hz, 1H), 1.68 (s, 3H), 1.25 (d, $J = 7.2$ Hz, 3H);

13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.66, 145.39, 134.90, 130.88 (d, $J = 32$ Hz), 129.72, 129.20, 129.03, 128.60, 128.31, 124.44 (d, $J = 4$ Hz), 124.01 (d, $J = 270$ Hz), 123.01 (d, $J = 4$ Hz), 78.30, 64.35, 42.14, 32.65, 22.75, 16.26; IR ν (cm$^{-1}$): 3024, 2969, 2930, 1718, 1618, 1456, 1374, 1333, 1243, 1125, 702; HRMS ESI Calcd for C$_{20}$H$_{20}$FNO$_2$ [M+Na]$^+$: 386.1338, Found: 386.1348.

(3S,5S)-1-(benzyloxy)-3,5-dimethyl-5-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one

Colourless oil (m = 40 mg, 54%, d.r. > 20 : 1); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.57 (dd, $J = 21.7$, 8.4 Hz, 4H), 7.28 - 7.20 (m, 5H), 5.06 (d, $J = 9.8$ Hz, 1H), 4.85 (d, $J = 9.8$ Hz, 1H), 2.61 (dp, $J = 9.2$, 7.2 Hz, 1H), 2.38 (dd, $J = 12.8$, 9.3 Hz, 1H), 1.91 (dd, $J = 12.9$, 7.3 Hz, 1H), 1.67 (s, 3H), 1.21 (d, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.60, 148.53, 135.00, 129.74 (d, $J = 32$ Hz), 129.24, 128.64, 128.34, 126.57, 125.42 (d, $J = 4$ Hz), 124.00 (d, $J = 274$ Hz), 122.62, 78.25, 64.59, 42.25, 32.65, 23.25, 16.79; IR ν (cm$^{-1}$): 3024, 2974, 2930, 1718, 1618, 1456, 1374, 1333, 1243, 1125, 702; HRMS ESI Calcd for C$_{20}$H$_{20}$FNO$_2$ [M+Na]$^+$:
(3S,5S)-1-(benzyloxy)-3,5-dimethyl-5-phenylpyrrolidin-2-one

Colourless oil (m = 28 mg, 47%, d.r. > 20 : 1); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.53 - 7.47 (m, 2H), 7.38 (dd, J = 10.2, 4.9 Hz, 2H), 7.32 (dd, J = 5.9, 3.7 Hz, 1H), 7.27 (dd, J = 6.4, 3.4 Hz, 3H), 7.19 (m, 2H), 5.05 (d, J = 9.5 Hz, 1H), 4.67 (d, J = 9.5 Hz, 1H), 2.67 - 2.55 (m, 1H), 2.37 (dd, J = 12.8, 9.3 Hz, 1H), 1.98 (dd, J = 12.8, 7.9 Hz, 1H), 1.67 (s, 3H), 1.25 (d, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.42, 143.98, 135.02, 129.30, 128.53, 128.48, 128.40, 128.23, 127.55, 126.32, 78.27, 64.43, 42.20, 32.65, 22.70, 16.73; IR ν (cm$^{-1}$): 3032, 2974, 2934, 2876, 1708, 1602, 1497, 1380, 1115, 732, 700; HRMS ESI Calcd for C$_{19}$H$_{21}$NO$_2$ [M+Na]$^+$: 318.1470, Found: 318.1469.

(3S,5S)-1-(benzyloxy)-3-methyl-5-(naphthalen-2-yl)pyrrolidin-2-one

Colourless oil (m = 32 mg, 48%, d.r. > 20 : 1); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.91 (m, 1H), 7.83 (d, J = 8.1 Hz, 2H), 7.56 - 7.46 (m, 4H), 7.29 - 7.15 (m, 5H), 5.17 (d, J = 6.9 Hz, 1H), 5.12 (d, J = 10.4 Hz, 1H), 4.83 (dd, J = 10.4, 7.3Hz, 1H), 2.78 - 2.68 (m, 1H), 2.64 - 2.53 (m, 1H), 1.69 (m, 1H), 1.26 (d, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 174.34, 135.05, 133.89, 130.64, 129.38, 129.11, 128.65, 128.34, 126.23, 125.69, 125.50, 122.31, 76.52, 34.34, 33.79, 30.96, 17.01; IR ν (cm$^{-1}$): 3034, 2968, 2931, 2875, 2850, 1708, 1454, 1374, 1122, 732, 699; HRMS ESI Calcd for C$_{22}$H$_{21}$NO$_2$ [M+Na]$^+$: 354.1470, Found: 354.1462.
(3S,5S)-1-(benzyloxy)-3-methyl-5-(thiophen-2-yl)pyrrolidin-2-one

Colourless oil (m = 25 mg, 44%, d.r. > 20 : 1); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 7.37 - 7.34\) (m, 1H), \(7.33\) (s, 1H), \(7.29\) (m, 2H), \(7.21\) (m, 2H), \(7.10\) (m, 1H), \(7.02\) (m, 1H), \(5.03\) (d, \(J = 9.8\) Hz, 1H), \(4.77 - 4.69\) (m, 1H), \(4.50\) (d, \(J = 9.7\) Hz, 1H), \(2.72 - 2.59\) (m, 1H), \(2.53 - 2.41\) (m, 1H), \(1.79\) (dt, \(J = 12.6, 9.6\) Hz, 1H), \(1.33\) (d, \(J = 7.0\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 174.41, 142.62, 134.92, 129.48, 129.44, 128.59, 128.39, 128.29, 127.42, 127.36, 125.90, 78.07, 57.19, 35.39, 34.20, 16.26; IR \(\nu\) (cm\(^{-1}\)): 3033, 2966, 2930, 1716, 1608, 1498, 1454, 1375, 1247, 1003, 910, 731; HRMS ESI Calcd for C\(_{16}\)H\(_{17}\)NO\(_2\)S [M+Na]\(^+\): 310.0872, Found: 310.0881.

(3S,7aS)-1-(benzyloxy)-3-methyl-7a-phenyloctahydro-2H-indol-2-one

Colourless oil (m = 32 mg, 48%, d.r. > 20 : 1); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 7.66 - 7.61\) (m, 2H), \(7.43\) (dd, \(J = 10.1, 4.8\) Hz, 2H), \(7.39 - 7.34\) (m, 1H), \(7.27 - 7.22\) (m, 3H), \(7.06\) (dd, \(J = 7.1, 2.4\) Hz, 2H), \(4.90\) (d, \(J = 9.3\) Hz, 1H), \(4.26\) (d, \(J = 9.3\) Hz, 1H), \(2.76\) (d, \(J = 14.5\) Hz, 1H), \(2.46\) (m, 1H), \(2.36\) (m, 1H), \(1.70\) (m, 2H), \(1.62 - 1.53\) (m, 3H), \(1.48\) (ddd, \(J = 10.2, 7.4, 3.7\) Hz, 1H), \(1.38\) (m, 1H), \(1.29\) (d, \(J = 6.8\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 175.06, 140.30, 134.97, 129.27, 129.48, 129.44, 128.59, 128.39, 128.29, 127.42, 127.36, 125.90, 78.47, 65.27, 44.81, 36.26, 30.66, 23.18, 22.04, 20.80, 14.64; IR \(\nu\) (cm\(^{-1}\)): 3031, 2966, 2932, 1717, 1602, 1497, 1452, 1373, 1123, 744, 699; HRMS ESI Calcd for C\(_{22}\)H\(_{25}\)NO\(_2\) [M+Na]\(^+\): 358.1783, Found:
(S)-1-(benzyloxy)-3-methyl-5,5-diphenylpyrrolidin-2-one

Colourless oil (m = 28 mg, 38%); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 7.48 - 7.44\) (m, 2H), \(7.40 - 36\) (m, 3H), \(7.33 - 7.21\) (m, 8H), \(7.11\) (m, 2H), \(4.81\) (d, \(J = 8.9\) Hz, 1H), \(4.09\) (d, \(J = 8.9\) Hz, 1H), \(2.73 - 2.67\) (dd, \(J = 8.5, 9.2\) Hz, 1H), \(2.60\) (dd, \(J = 12.0, 10.0\) Hz, 1H), \(2.43 - 2.36\) (m, 1H), \(1.29\) (d, \(J = 7.0\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 173.46, 142.51, 134.43, 129.54, 128.85, 128.48, 128.23, 128.19, 128.15, 127.51, 127.31, 78.20, 70.92, 49.95, 32.11, 15.58\); IR \(\nu\) (cm\(^{-1}\)): 3033, 2965, 2931, 2875, 2850, 1711, 1600, 1495, 1448, 1375, 1113, 731,699; HRMS ESI Calcd for C\(_{24}\)H\(_{23}\)NO\(_2\) [M+Na]\(^{+}\): 380.1626, Found: 380.1630.

(3S,4R,5S)-1-(benzyloxy)-3-methyl-4,5-diphenylpyrrolidin-2-one

Colourless oil (m = 11 mg, 15%, \(d.r. > 20 : 1\)); \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta 7.27 - 7.25\) (m, 6H), \(7.24 - 7.21\) (m, 4H), \(7.19 - 7.15\) (m, 4H), \(6.99 - 6.97\) (m, 2H), \(5.17\) (d, \(J = 10.1\) Hz, 1H), \(4.68\) (d, \(J = 10.1\) Hz, 1H), \(4.34\) (d, \(J = 8.9\) Hz, 1H), \(2.88 - 2.85\) (t, \(J = 6.0\) Hz, 1H), \(2.61\) (dq, \(J = 10.0, 7.0\) Hz, 1H), \(1.28\) (d, \(J = 7.0\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta 173.2, 129.52, 128.71, 128.66, 128.54, 128.37, 128.33, 127.75, 127.52, 127.43, 77.00, 69.36, 54.93, 42.21, 14.71\); IR \(\nu\) (cm\(^{-1}\)): 3032, 2961, 2919, 1708, 1601, 1497, 1455, 1374, 909, 732; HRMS ESI Calcd for C\(_{24}\)H\(_{23}\)NO\(_2\) [M+Na]\(^{+}\): 380.1621, Found:380.1624.
(3S,5S)-1-(benzyloxy)-3-ethyl-5-phenylpyrrolidin-2-one
Colourless oil (m = 38 mg, 64%, d.r. = 11.1 : 1); \(^1H \) NMR (400 MHz, CDCl₃, ppm): \(\delta \) 7.43 - 7.35 (m, 3H), 7.33 (dd, \(J = 7.7, 1.7 \) Hz, 2H), 7.29 - 7.23 (m, 3H), 7.13 (dd, \(J = 7.6, 1.7 \) Hz, 2H), 5.05 (d, \(J = 10.0 \) Hz, 1H), 4.57 (d, \(J = 9.9 \) Hz, 1H), 4.40 (dd, \(J = 9.2, 6.9 \) Hz, 1H), 2.50 (ddd, \(J = 12.4, 9.1, 6.9 \) Hz, 1H), 2.39 (ddd, \(J = 18.3, 9.1, 4.1 \) Hz, 1H), 1.99 (qdd, \(J = 10.9, 6.8, 3.7 \) Hz, 1H), 1.66 (m, 1H), 1.60 - 1.50 (m, 1H), 0.99 (t, \(J = 7.5 \) Hz, 3H); \(^{13}C \) NMR (100 MHz, CDCl₃, ppm): \(\delta \) 174.25, 139.48, 134.95, 129.50, 129.40, 129.76, 128.69, 128.59, 128.38, 128.28, 127.41, 61.93, 40.34, 32.51, 30.96, 24.12, 10.97; IR \(\nu \) (cm\(^{-1}\)): 3034, 2964, 2934, 2877, 1708, 1604, 1497, 1458, 1367, 1129, 732, 699; HRMS ESI Calcd for C\(_{19}\)H\(_{21}\)NO\(_2\) [M+Na]\(^+\): 318.1470, Found: 318.1471.

(3S,5S)-1-(benzyloxy)-3-chloro-5-phenylpyrrolidin-2-one
Colourless oil (m = 22 mg, 36%, d.r. > 20 : 1); \(^1H \) NMR (400 MHz, CDCl₃, ppm): \(\delta \) 7.43 (m, 3H), 7.38 - 7.34 (m, 2H), 7.33 - 7.26 (m, 3H), 7.13 (d, \(J = 6.5 \) Hz, 2H), 5.12 (d, \(J = 10.0 \) Hz, 1H), 4.57 (d, \(J = 10.0 \) Hz, 1H), 4.43 (m, 2H), 3.01 (ddd, \(J = 13.9, 9.0, 7.3 \) Hz, 1H), 2.33 - 2.23 (m, 1H); \(^{13}C \) NMR (100 MHz, CDCl₃, ppm): \(\delta \) 166.54, 137.67, 134.38, 129.51, 129.36, 129.10, 128.98, 128.93, 128.75, 128.43, 127.90, 127.60, 77.70, 77.20, 61.05, 50.81, 37.03; IR \(\nu \) (cm\(^{-1}\)): 3033, 1728, 1604, 1497, 1457, 1368, 1124, 699; HRMS ESI Calcd for C\(_{17}\)H\(_{16}\)ClNO\(_2\) [M+Na]\(^+\): 324.0762, Found: 324.0766.
(S)-1-(benzyloxy)-3,3-dimethyl-5-phenylpyrrolidin-2-one
White solid (m = 28 mg, 47%); m.p.: 96.2 - 98.6 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.39 (m, 3H), 7.32 - 7.26 (m, 5H), 7.17 (dd, $J = 7.7$, 1.7 Hz, 2H), 5.07 (d, $J = 10.2$ Hz, 1H), 4.62 (d, $J = 10.2$ Hz, 1H), 4.40 (dd, $J = 8.5$, 7.3 Hz, 1H), 2.17 (dd, $J = 12.9$, 7.1 Hz, 1H), 1.82 (dd, $J = 12.8$, 8.7 Hz, 1H), 1.27 (s, 3H), 1.19 (s, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 176.52, 139.40, 134.97, 129.54, 128.70, 128.69, 128.31, 128.27, 127.28, 77.06, 60.48, 42.31, 37.83, 25.58; IR ν (cm$^{-1}$): 3033, 2964, 2929, 2871, 1710, 1604, 1497, 1457, 1388, 1366, 1120, 732, 699; HRMS ESI Calcd for C$_{19}$H$_{21}$NO$_2$ [M+Na]$^+$: 318.1470, Found: 318.1474.

(3S,5S)-1-(tert-butoxy)-3-methyl-5-phenylpyrrolidin-2-one
Colourless oil (m = 18 mg, 36%, d.r. > 20:1); 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.35 (d, $J = 7.5$ Hz, 2H), 7.31 (dd, $J = 5.3$, 1.8 Hz, 1H), 7.26 (dd, $J = 5.6$, 4.2 Hz, 2H), 4.75 (t, $J = 7.0$ Hz, 1H), 2.70 (m, 1H), 2.60 - 2.50 (m, 1H), 1.67 (m, 1H), 1.23 (d, $J = 7.2$ Hz, 3H), 1.15 (s, 9H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 176.35, 140.56, 128.47, 127.82, 127.34, 83.55, 63.20, 34.95, 32.68, 27.58, 17.24; IR ν (cm$^{-1}$): 3033, 2976, 2931, 1714, 1604, 1495, 1457, 1388, 1366, 1162, 700; HRMS ESI Calcd for C$_{15}$H$_{21}$NO$_2$ [M+Na]$^+$: 270.1470, Found: 270.1476.
zhang-100

\[\text{Me} \overset{\text{O}}{\text{N-OBn}} \]

3a\(^{a}\)
3g

![Chemical structure image](image_url)
[Image of a chemical structure labeled as 3l with ppm values listed nearby]
Me\textsubscript{3}CN-OBn

3r

ppm

8 7 6 5 4 3 2 1 0...
Me\(\text{N-OBn}\)\(\text{S}\)

3s

The diagram shows an NMR spectrum for a compound labeled as "Me₅N-Ot-Bu 3z." The spectrum includes peaks at various ppm values, with some peaks being more prominent than others. The ppm scale ranges from 0.000 to 8.000.

- Peaks at 7.372, 7.362, 7.342, and 7.316 ppm
- Peaks at 4.763 and 4.746 ppm
- Peaks at 2.733, 2.713, 2.709, and 2.690 ppm
- Peaks at 1.153 and 1.00 ppm
- Peaks at 7.379, 7.362, 7.342, and 7.316 ppm

The compound structure is also depicted with methyl groups indicated by "Me₅."