Chelation-Assisted C–N Cross-Coupling of Phosphinamides and Aryl Bronic Acids with Copper Powder at Room Temperature

Yao Peng,†,a Jian Lei,†,a Renhua Qiu,*a Lingteng Peng,a Chak-Tong Au,b and Shuang-Feng Yin*a

a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
[renhuaqiu@hnu.edu.cn; sf_yin@hnu.edu.cn]
b College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
† Y. Peng and J. Lei contribute equally to this work.

Table of Contents

1. General information...2
2. Synthesis and characterization of starting materials ..3
3. 1H, 13C, 31P, 19F NMR spectra data of the products..6
4. References ..17
5. Copies of 1H, 13C, 31P, 19F NMR charts of the Compounds ...18
1. General information

The reactions were carried out in 25-mL Schlenk tubes under O₂. Unless noted otherwise, the materials obtained from commercial suppliers were used without further purification, and solvents were purified according to standard operating procedures. Flash column chromatography was performed using Silica Gel 60 (300–400 mesh). Analytical thin layer chromatography (TLC) was performed on Haigang TLC silica gel GF254 (0.25 mm) plates. The ¹H, ¹³C NMR, ³¹P NMR and ¹⁹F NMR spectra were recorded on a Brucker ADVANCE III spectrometer operating at 400 MHz, 100 MHz, 162 MHz and 376 MHz, respectively; and chemical shifts are reported in ppm (δ) relative to internal tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), and coupling constants (J) were reported in hertz. The NMR yields were determined by ³¹P NMR spectra with triphenylphosphine oxide (at 29.0 ppm) as internal standard. The reactions were monitored by GC and GC-MS; GC-MS results were recorded on a GC-MS QP2010 while GC analyses on a GC 2014 plus equipment. The electron ionization (EI) approach was used as ionization method for HRMS measurements, and TOF was the mass analyzer type for EI.

Starting phosphinamides, e.g., P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (1a), N-(quinolin-8-yl)-P,P-di-p-tolyolphosphinamide (1b), N-(quinolin-8-yl)-P,P-di-m-tolyolphosphinamide (1c), P,P-bis(4-fluorophenyl)-N-(quinolin-8-yl)phosphinamide (1d), P,P-bis(3-fluorophenyl)-N-(quinolin-8-yl)phosphinamide (1e), P,P-bis(4-chlorophenyl)-N-(quinolin-8-yl)phosphinamide (1f), P,P-bis(4-methoxyphenyl)-N-(quinolin-8-yl)phosphinamide (1g), N-(2-(1H-pyrazol-1-yl)phenyl)-P,P-diphenylphosphinamide (1h), N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-diphenylphosphinamide (1i), N,P,P-triphenyl-phosphinamide, N-(naphthalen-1-yl)-P,P-diphenylphosphinamide, N-(perfluorophenyl)-P,P-diphenylphosphinamide, P,P-diphenyl-N-(pyridin-3-yl)phosphinamide and P,P-diphenyl-N-(pyridin-2-yl)phosphinamide were prepared according to literature procedures. Spectral data obtained for the starting phosphinamides are in good agreement with the reported data.¹ ²
2. Synthesis and characterization of starting materials

General procedure for the synthesis of phosphinamides

To a solution of arylmagnesium bromide (0.1 mol) in THF (100 mL), diethyl phosphate (4.1 g, 0.03 mol) in THF (20 mL) was added dropwise with vigorous stirring under the cooling of ice-water bath. Then the mixture thus obtained was heated under reflux for 1 h. After the reflux, the resulting reaction mixture was cooled to 0 °C, and hydrochloric acid (6 N, 50 mL) was added slowly upon stirring. The solution was then evaporated under reduced pressure. The residue was extracted with EtOAc (150 mL). The organic layer was dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo to give crude product A1 which was used directly for the next step without further purification.

Hydrogen peroxide (30%, 16 mL) was added dropwise to a suspension of A1 in aqueous NaOH (5 N, 16 mL) at 95 °C, and the mixture was stirred for 1 h at 100 °C. After the solution was cooled to 0 °C, concentrated hydrochloric acid (12 N) was added dropwise until no white solid was precipitated out. The precipitate was collected by filtration and washed with Et$_2$O, then dried in vacuo to give crude phosphinic acid A2 which was used directly without purification.

A suspension of A2 and thionyl chloride (20 mL) in anhydrous toluene (60 mL) was heated to 80 °C for 3 hours. After thionyl chloride and toluene were removed
under reduced pressure, the residue was re-dissolved in anhydrous toluene (50 mL)
and evaporated to give phosphinic chloride A3.

To a solution of 8-aminquinoline (4.6 g, 32 mmol), triethylamine (5 mL, 35
mml), and N,N-dimethyl-4-aminopyridine (120 mg, 0.98 mmol) in CH₂Cl₂ (40 mL),
a suspension of A3 was added dropwise under N₂ atmosphere with vigorous stirring at
0 °C. Then the resulting mixture was warm to room temperature. After stirring
overnight, the reaction system was quenched with water (30 mL) and extracted with
CH₂Cl₂ (3×50 mL). The combined organic layer was dried over anhydrous Na₂SO₄,
filtered, and concentrated in vacuo. The residue was purified by flash column
chromatography on silica gel to afford the corresponding P,P-diaryl-N-(quinolin-8-
yl)phosphinamide.

Analytical data for new starting phosphinamides

P,P-di-m-tolyl-N-(quinolin-8-yl)phosphinamide (1c)

![Structure of 1c](image)

1c was synthesized in 45% yield in 4 steps as a brown solid.
R_f = 0.43 (petroleum ether/ethyl acetate = 2:1), mp 165–166
°C. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 3.7 Hz, 1H),
8.10 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 12.8 Hz, 1H), 7.82 (d, J = 12.8 Hz, 2H), 7.72–7.67 (m, 2H), 7.43–7.25 (m, 8H), 2.38 (s,
6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 138.7 (d, J = 12.9
Hz), 137.8, 136.3, 133.0 (d, J = 3.0 Hz), 132.6, 132.4 (d, J =
10.0 Hz), 131.3, 128.7 (d, J = 23.5 Hz), 128.7, 128.4, 127.1, 121.6, 119.2, 113.8 (d, J = 3.9 Hz), 21.4; ³¹P NMR (162 Hz, CDCl₃) δ 19.6. HRMS (ESI) calcd. for

P,P-bis(3-fluorophenyl)-N-(quinolin-8-yl)phosphinamide (1e)

![Structure of 1e](image)

1e was synthesized in 21% yield in 4 steps as a brown solid.
R_f = 0.52 (petroleum ether/ethyl acetate = 2:1), mp 145–146
°C. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 4.0 Hz, 1H),
8.12 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 13.5 Hz, 1H), 7.74 (dd, J
= 12.1, 7.6 Hz, 2H), 7.66 (t, J = 10.9 Hz, 2H), 7.50–7.42 (m,
3H), 7.39–7.34 (m, 2H), 7.30–7.22 (m, 3H); ¹³C NMR (100
MHz, CDCl₃) δ 162.7 (dd, J = 249.0, 18.4 Hz), 148.2, 138.6
(d, J = 7.2 Hz), 137.0, 136.3, 134.2 (dd, J = 128.7, 5.6 Hz), 130.9 (dd, J = 15.2, 7.4
Hz), 128.4, 127.5 (dd, J = 9.5, 3.2 Hz), 127.0, 121.8, 119.9, 119.6 (dd, J = 21.1, 2.6
Hz), 118.7 (q, J = 11.0 Hz), 113.8 (d, J = 3.8 Hz); ³¹P NMR (162 Hz, CDCl₃) δ 16.0 (t,
J = 6.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -110.43–110.51 (m). HRMS (ESI) calcd.
for C₂₁H₁₆F₂N₂O₅P [M]+: 381.0963; found: 381.0952.

N-(2-(1H-pyrazol-1-yl)phenyl)-P,P-diphenylphosphinamide (1h)

![Structure of 1h](image)
1h was synthesized in 90% yield as a white solid. Rf = 0.34 (petroleum ether/ethyl acetate = 5:1), mp 124–126 °C. 1H NMR (400 MHz, CDCl3) δ 8.95 (d, J = 11.8 Hz, 1H), 7.85–7.80 (m, 5H), 7.66 (s, 1H), 7.48–7.43 (m, 3H), 7.40 (d, J = 7.0 Hz, 4H), 7.25 (d, J = 7.8 Hz, 1H), 7.04–7.01 (m, 1H), 6.91–6.87 (m, 1H), 6.46 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 140.3, 134.2, 132.8, 131.8 (d, J = 2.5 Hz), 131.4 (d, J = 10.1 Hz), 129.5, 128.5 (d, J = 12.9 Hz), 128.2 (d, J = 7.6 Hz), 127.7, 122.0, 121.4, 120.3 (d, J = 4.5 Hz), 106.8. 31P NMR (162 MHz, CDCl3) δ 18.3. HRMS (ESI) calcd. for C21H18N3OP [M]+: 359.1387; found: 359.1382.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-diphenylphosphinamide (1i)

1i was synthesized in 40% yield as a yellow solid. Rf = 0.55 (petroleum ether/ethyl acetate = 2:1), mp 122–125 °C. 1H NMR (400 MHz, CDCl3) δ 11.00 (d, J = 13.0 Hz, 1H), 7.93–7.88 (m, 4H), 7.78 (d, J = 7.7 Hz, 1H), 7.46–7.35 (m, 7H), 7.15–7.11 (m, 1H), 6.84–6.81 (m, 1H), 4.29 (t, J = 9.3 Hz, 2H), 3.98 (t, J = 9.3 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 164.8 (d, J = 0.8 Hz), 142.8, 133.0, 131.9, 131.7 (d, J = 2.7 Hz), 131.4 (d, J = 10.1 Hz), 129.2, 128.4 (d, J = 12.9 Hz), 119.6, 117.9 (d, J = 5.0 Hz), 112.4 (d, J = 7.7 Hz), 65.8, 54.2. 31P NMR (162 MHz, CDCl3) δ 18.3. HRMS (ESI) calcd. for C21H19N2O2P [M]+: 362.1184; found: 362.1180.
General experimental procedure for the synthesis of \(\text{N-aryl phosphinamide}\)

An oven-dried 25-mL Schlenk tube, equipped with a magnetic stir bar and charged with phosphinamide (0.1 mmol), copper powder (6.4 mg, 1.0 equiv), and boronic acids (0.2 mmol, 2.0 equiv), was evacuated and backfilled with \(\text{O}_2\) three times. Then, acetonitrile (1.0 mL) was added under \(\text{O}_2\) atmosphere and the reaction mixture was stirred at 25–100 °C for 12–24 h and monitored by TLC or GC-MS analysis. Upon completion, the mixture was made to pass through a short pad of celite with \(\text{CH}_2\text{Cl}_2\) and the solution was concentrated in vacuo. The residue was purified by silica gel flash chromatography column to give the corresponding products.

3. \(^1\text{H}, ^{13}\text{C}, ^{31}\text{P}, ^{19}\text{F}\) NMR spectra data of the products

\(\text{N,\text{P,P}}\text{-triphenyl-\text{N-(quinolin-8-yl)phosphinamide (3a)}}\)

The phosphinamide compound was obtained as a yellow solid. \(R_f = 0.37\) (petroleum ether/ethyl acetate = 1:1), mp 210–212 °C. \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.04 (d, \(J = 1.4\) Hz, 1H), 8.05–7.97 (m, 6H), 7.57 (d, \(J = 8.1\) Hz, 1H), 7.38–7.34 (m, 4H), 7.22–7.18 (m, 2H), 7.13 (d, \(J = 7.4\) Hz, 4H), 7.03 (t, \(J = 7.4\) Hz, 2H), 6.85 (t, \(J = 7.2\) Hz, 1H). \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 150.2, 146.3 (d, \(J = 3.1\) Hz), 145.7 (d, \(J = 3.9\) Hz), 140.7 (d, \(J = 2.6\) Hz), 135.8, 132.9 (d, \(J = 9.6\) Hz), 132.5 (d, \(J = 3.2\) Hz), 131.5 (d, \(J = 130.5\) Hz), 131.1 (d, \(J = 2.8\) Hz), 129.0, 128.4, 128.0, 127.4 (d, \(J = 13.0\) Hz), 126.5 (d, \(J = 1.2\) Hz), 123.1 (d, \(J = 4.7\) Hz), 122.9, 121.3. \(^{31}\text{P}\) NMR (162 MHz, CDCl\(_3\)) \(\delta\) 25.0. HRMS (ESI) calcd. for C\(_{27}\)H\(_{21}\)N\(_2\)OP [M]+: 420.1391; found: 420.1386.

\(\text{N-(4-ethylphenyl)-\text{P,P-diphenyl-\text{N-(quinolin-8-yl)phosphinamide (3b)}}}\)

The phosphinamide compound was obtained as a yellow solid. \(R_f = 0.45\) (petroleum ether/ethyl acetate = 2:1), mp 130–132 °C. \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.90 (d, \(J = 2.1\) Hz, 1H), 7.96–7.87 (m, 5H), 7.75 (d, \(J = 8.1\) Hz, 1H), 7.34 (d, \(J = 8.0\) Hz, 1H), 7.26 (d, \(J = 7.9\) Hz, 2H), 7.17–7.13 (t, \(J = 8.2\) Hz, 2H), 7.00–6.95 (m, 6H), 6.73 (d, \(J = 8.1\) Hz, 2H), 2.29–2.23 (m, 2H), 0.91–0.87 (t, \(J = 7.6\) Hz, 3H); \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 149.9, 146.0 (d, \(J = 3.3\) Hz), 143.0 (d, \(J = 3.6\) Hz), 140.8 (d, \(J = 2.5\) Hz), 138.7, 135.6, 132.6 (d, \(J = 9.7\) Hz), 132.1 (d, \(J = 4.4\) Hz), 130.9 (d, \(J = 2.6\) Hz), 130.8, 128.7, 127.7, 127.5, 127.2 (d, \(J = 13.0\) Hz), 126.2, 123.5 (d, \(J = 4.7\) Hz), 121.0, 27.6, 15.0; \(^{31}\text{P}\) NMR (162 MHz, CDCl\(_3\)) \(\delta\) 24.7. HRMS (ESI) calcd. for C\(_{29}\)H\(_{25}\)N\(_2\)OP [M]+: 448.1704; found: 448.1699.
The phosphinamide compound was obtained as a yellow solid.

\(R_f = 0.33 \) (petroleum ether/ethyl acetate = 2/1), mp 191–193 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \): 8.97 (d, \(J = 1.8 \) Hz, 1H), 7.96–7.87 (m, 6H), 7.46 (d, \(J = 8.1 \) Hz, 1H), 7.28–7.19 (m, 4H), 7.13–7.04 (m, 6H), 6.81 (d, \(J = 8.0 \) Hz, 2H), 2.66–2.58 (m, 1H), 1.00 (d, \(J = 6.8 \) Hz, 6H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \): 150.1, 146.3 (d, \(J = 3.1 \) Hz), 140.9 (d, \(J = 2.4 \) Hz), 135.8, 132.8 (d, \(J = 9.7 \) Hz), 132.4 (d, \(J = 3.3 \) Hz), 131.6 (d, \(J = 130.9 \) Hz), 131.1 (d, \(J = 2.6 \) Hz), 129.0, 127.8, 127.4 (d, \(J = 13.0 \) Hz), 126.5 (d, \(J = 1.1 \) Hz), 126.3, 123.4 (d, \(J = 4.7 \) Hz), 121.2, 33.1, 23.7; \(^3^1\)P NMR (162 MHz, CDCl\(_3\)) \(\delta \): 24.9. HRMS (ESI) calcd. for \(\text{C}_{30}\text{H}_{27}\text{N}_2\text{OP} [M]^+ \): 462.1861; found: 462.1856.

The phosphinamide compound was obtained as a white solid.

\(R_f = 0.28 \) (petroleum ether/ethyl acetate = 2/1), mp 143–145 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \): 9.03 (d, \(J = 4.0 \) Hz, 1H), 8.05–8.00 (m, 5H), 7.94 (d, \(J = 8.2 \) Hz, 1H), 7.53 (d, \(J = 8.2 \) Hz, 1H), 7.34–7.3 (m, 4H), 7.19–7.11 (m, 6H), 6.84 (d, \(J = 8.0 \) Hz, 2H), 2.39 (t, \(J = 7.7 \) Hz, 2H), 1.45–1.38 (m, 2H), 1.25–1.16 (m, 2H), 0.82 (t, \(J = 7.3 \) Hz, 3H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \): 150.1, 146.2 (d, \(J = 3.4 \) Hz), 143.1 (d, \(J = 3.6 \) Hz), 140.9 (d, \(J = 2.6 \) Hz), 137.8, 135.8, 132.87 (d, \(J = 9.7 \) Hz), 132.3 (d, \(J = 3.3 \) Hz), 131.4 (d, \(J = 131.0 \) Hz), 131.1 (d, \(J = 2.7 \) Hz), 129.0, 128.3, 127.8 (d, \(J = 0.7 \) Hz), 127.4 (d, \(J = 13.1 \) Hz), 126.4 (d, \(J = 1.3 \) Hz), 123.8 (d, \(J = 4.7 \) Hz), 121.1, 34.7, 33.2, 22.1, 13.7; \(^3^1\)P NMR (162 MHz, CDCl\(_3\)) \(\delta \): 25.0. HRMS (ESI) calcd. for \(\text{C}_{31}\text{H}_{29}\text{N}_2\text{OP} [M]^+ \): 476.2018; found: 476.2033.

The phosphinamide compound was obtained as a yellow solid.

\(R_f = 0.35 \) (petroleum ether/ethyl acetate = 2/1), mp 200–202 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \): 8.97–8.96 (m, 1H), 7.96–7.87 (m, 6H), 7.46 (d, \(J = 8.1 \) Hz, 1H), 7.27–7.23 (m, 2H), 7.19 (d, \(J = 8.4 \) Hz, 2H), 7.12–7.08 (m, 2H), 7.05–7.02 (m, 4H), 6.96 (d, \(J = 7.6 \) Hz, 2H), 1.07 (s, 9H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \): 150.16 (s), 145.6, 142.8 (d, \(J = 3.3 \) Hz), 140.8 (d, \(J = 1.6 \) Hz), 135.9, 132.8 (d, \(J = 9.6 \) Hz), 132.5 (d, \(J = 1.3 \) Hz), 132.2–132.1 (m), 131.1 (d, \(J = 2.2 \) Hz), 130.9, 129.0, 127.9, 127.4 (d, \(J = 12.9 \) Hz), 126.5, 125.2, 122.8 (d, \(J = 4.5 \) Hz), 121.2, 33.9, 31.1; \(^3^1\)P NMR (162 MHz, CDCl\(_3\)) \(\delta \): 24.94. HRMS (ESI) calcd. for \(\text{C}_{31}\text{H}_{29}\text{N}_2\text{OP} [M]^+ \): 476.2018; found: 476.2025.
P,P-diphenyl-N-(quinolin-8-yl)-N-(p-tolyl)phosphinamide (3f)

The phosphinamide compound was obtained as a yellow solid.

\[R_f = 0.40 \] (petroleum ether/ethyl acetate = 1/1), mp 195–197 °C.

\[^1^H\text{ NMR (400 MHz, CDCl}_3\text{)} \delta 8.92–8.91 (1H), 7.96–7.89 (3H), 7.79 (d, \text{J} = 8.2 \text{ Hz}, 1H), 7.38 (d, \text{J} = 8.1 \text{ Hz}, 1H), 7.25 (d, \text{J} = 7.9 \text{ Hz}, 2H), 7.21–7.14 (m, 2H), 7.06–6.98 (m, 6H), 6.71 (d, \text{J} = 8.0 \text{ Hz}, 2H), 1.97 (s, 3H).

\[^{13}^C\text{ NMR (100 Hz, CDCl}_3\text{)} \delta 150.0, 146.1 (d, \text{J} = 3.2 \text{ Hz}), 143.0 (d, \text{J} = 3.7 \text{ Hz}), 140.9 (d, \text{J} = 2.5 \text{ Hz}), 135.7, 132.7 (d, \text{J} = 9.7 \text{ Hz}), 132.6, 132.2, 132.1 (d, \text{J} = 1.6 \text{ Hz}), 130.9 (d, \text{J} = 2.6 \text{ Hz}), 130.8, 128.9, 127.7, 127.3 (d, \text{J} = 12.9 \text{ Hz}), 126.3 (d, \text{J} = 1.0 \text{ Hz}), 123.8 (d, \text{J} = 4.6 \text{ Hz}), 121.1, 20.4.

\[^{31}^P\text{ NMR (162 MHz, CDCl}_3\text{)} \delta 24.8.\]

HRMS (ESI) calcd. for \(\text{C}_{28}\text{H}_{23}\text{N}_2\text{OP} [\text{M}]^+\): 434.1548; found: 434.1545.

P,P-diphenyl-N-(quinolin-8-yl)-N-(m-tolyl)phosphinamide (3g)

The phosphinamide compound was obtained as a white solid. \(R_f = 0.4 \) (petroleum ether /ethyl acetate = 1/1), mp 177–179 °C.

\[^1^H\text{ NMR (400 MHz, CDCl}_3\text{)} \delta 8.95–8.94 (1H), 7.95–7.86 (m, 6H), 7.46 (d, \text{J} = 8.1 \text{ Hz}, 1H), 7.28–7.23 (m, 2H), 7.12–7.08 (m, 4H), 2.0 (s, 3H).

\[^{13}^C\text{ NMR (100 MHz, CDCl}_3\text{)} \delta 150.1, 146.3 (d, \text{J} = 3.2 \text{ Hz}), 145.6 (d, \text{J} = 3.7 \text{ Hz}), 140.8 (d, \text{J} = 2.7 \text{ Hz}), 138.1, 135.8, 132.8 (d, \text{J} = 9.7 \text{ Hz}), 132.5 (d, \text{J} = 3.3 \text{ Hz}), 132.1, 131.1 (d, \text{J} = 2.7 \text{ Hz}), 130.8, 129.0, 128.1, 127.9, 127.4 (d, \text{J} = 13.1 \text{ Hz}), 126.4 (d, \text{J} = 1.4 \text{ Hz}), 124.0 (d, \text{J} = 6.4 \text{ Hz}), 121.2, 120.6 (d, \text{J} = 4.8 \text{ Hz}), 21.3.

\[^{31}^P\text{ NMR (162 MHz, CDCl}_3\text{)} \delta 25.0.\]

HRMS (ESI) calcd. for \(\text{C}_{28}\text{H}_{23}\text{N}_2\text{OP} [\text{M}]^+\): 434.1548; found: 434.1543.

P,P-diphenyl-N-(quinolin-8-yl)-N-(o-tolyl)phosphinamide (3h)

The phosphinamide compound was obtained as a yellow solid. \(R_f = 0.42 \) (petroleum ether /ethyl acetate = 1/1), mp 207–208 °C.

\[^1^H\text{ NMR (400 MHz, CDCl}_3\text{)} \delta 8.72–8.70 (1H), 8.33 (d, \text{J} = 7.5 \text{ Hz}, 1H), 7.87 (d, \text{J} = 8.2 \text{ Hz}, 1H), 7.83–7.81 (m, 1H), 7.77–7.72 (m, 4H), 7.43 (d, \text{J} = 8.1 \text{ Hz}, 1H), 7.27 (t, \text{J} = 7.6 \text{ Hz}, 1H), 7.23–7.14 (m, 3H), 7.12–7.08 (m, 4H), 2.30 (s, 3H).

\[^{13}^C\text{ NMR (100 MHz, CDCl}_3\text{)} \delta 148.7, 144.7 (d, \text{J} = 5.3 \text{ Hz}), 141.9, 141.5 (d, \text{J} = 2.8 \text{ Hz}), 139.0 (d, \text{J} = 3.4 \text{ Hz}), 135.7, 133.8 (d, \text{J} = 2.8 \text{ Hz}), 132.7 (d, \text{J} = 9.5 \text{ Hz}), 132.2, 131.2 (d, \text{J} = 2.7 \text{ Hz}), 130.9, 130.7, 130.0 (d, \text{J} = 4.0 \text{ Hz}), 129.2, 127.6 (d, \text{J} = 12.9 \text{ Hz}), 126.5, 126.1 (d, \text{J} = 14.9 \text{ Hz}), 125.2, 120.8, 19.4.

\[^{31}^P\text{ NMR (162 MHz, CDCl}_3\text{)} \delta 27.8.\]

HRMS (ESI) calcd. for \(\text{C}_{28}\text{H}_{23}\text{N}_2\text{OP} [\text{M}]^+\): 434.1548; found: 434.1560.
N-(4-fluorophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3i)

The phosphinamide compound was obtained as a yellow solid.

R\(_f\) = 0.35 (petroleum ether / ethyl acetate = 1/1), mp 211–213 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.97 (d, \(J = 1.8\) Hz, 1H), 7.95–7.89 (m, 6H), 7.48 (d, \(J = 8.0\) Hz, 1H), 7.40 (d, \(J = 4.2\) Hz 2H), 7.29–7.26 (m, 2H), 7.18–7.12 (m, 2H), 7.06 (s, 4H), 6.65 (t, \(J = 8.4\) Hz, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 160.5, 158.1, 150.2, 146.0 (d, \(J = 3.6\) Hz), 141.4 (t, \(J = 3.2\) Hz), 141.0 (d, \(J = 2.3\) Hz), 135.9, 132.8 (d, \(J = 9.7\) Hz), 132.0 (d, \(J = 3.3\) Hz), 131.0 (d, \(J = 13.1\) Hz), 131.3 (d, \(J = 2.7\) Hz), 129.1, 128.0, 127.5 (d, \(J = 13.1\) Hz), 126.4–126.23 (m), 121.3, 115.0 (d, \(J = 22.3\) Hz).

\(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta\) 25.6.

N-(4-chlorophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3j)

The phosphinamide compound was obtained as a white solid. R\(_f\) = 0.55 (petroleum ether / ethyl acetate = 1:1), mp 184–186 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.96 (d, \(J = 4.0\) Hz, 1H), 7.94–7.87 (m, 6H), 7.50 (d, \(J = 8.1\) Hz, 1H), 7.30–7.26 (m, 2H), 7.23 (d, \(J = 8.5\) Hz, 2H), 7.18–7.12 (m, 2H), 7.08–7.04 (m, 4H), 6.90 (d, \(J = 8.4\) Hz, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 150.3, 146.1 (d, \(J = 2.9\) Hz), 144.3 (d, \(J = 4.1\) Hz), 140.5 (d, \(J = 4.8\) Hz), 136.0, 132.8 (d, \(J = 9.8\) Hz), 132.4 (d, \(J = 3.1\) Hz), 131.7, 131.3 (d, \(J = 2.8\) Hz), 130.4, 129.0, 128.3 (d, \(J = 7.3\) Hz), 128.2 (d, \(J = 1.1\) Hz), 127.5 (d, \(J = 13.1\) Hz), 126.5 (d, \(J = 1.4\) Hz), 124.5 (d, \(J = 4.8\) Hz), 121.4.

\(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta\) 25.5. HRMS (ESI) calcd. for C\(_{27}\)H\(_{20}\)ClN\(_2\)O\(_3\)P [M]+: 454.1002; found: 454.0996.

N-(4-bromophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3k)

The phosphinamide compound was obtained as a white solid. R\(_f\) = 0.41 (petroleum ether / ethyl acetate = 1/1), mp 201–203 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.96–8.95 (m, 1H), 7.94–7.85 (m, 6H), 7.51 (d, \(J = 8.1\) Hz, 1H), 7.30–7.26 (m, 2H), 7.23 (d, \(J = 8.5\) Hz, 2H), 7.18–7.12 (m, 2H), 7.08–7.04 (m, 4H), 6.90 (d, \(J = 8.4\) Hz, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 150.3, 146.1 (d, \(J = 3.1\) Hz), 144.3 (d, \(J = 4.1\) Hz), 140.5 (d, \(J = 4.8\) Hz), 136.0, 132.8 (d, \(J = 9.8\) Hz), 132.4 (d, \(J = 3.1\) Hz), 131.7, 131.3 (d, \(J = 2.8\) Hz), 130.4, 129.0, 128.3 (d, \(J = 7.3\) Hz), 128.2 (d, \(J = 1.1\) Hz), 127.5 (d, \(J = 13.1\) Hz), 126.5 (d, \(J = 1.4\) Hz), 124.5 (d, \(J = 4.8\) Hz), 121.4.

\(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta\) 25.5. HRMS (ESI) calcd. for C\(_{27}\)H\(_{20}\)BrN\(_2\)O\(_3\)P [M]+: 498.0497; found: 498.0491.

N-(4-iodophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3l)

The phosphinamide compound was obtained as a yellow solid.

R\(_f\) = 0.35 (petroleum ether / ethyl acetate = 1/1), mp 211–213 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.97 (d, \(J = 1.8\) Hz, 1H), 7.95–7.89 (m, 6H), 7.48 (d, \(J = 8.0\) Hz, 1H), 7.40 (d, \(J = 4.2\) Hz 2H), 7.29–7.26 (m, 2H), 7.18–7.12 (m, 2H), 7.06 (s, 4H), 6.65 (t, \(J = 8.4\) Hz, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 160.5, 158.1, 150.2, 146.0 (d, \(J = 3.6\) Hz), 141.4 (t, \(J = 3.2\) Hz), 141.0 (d, \(J = 2.3\) Hz), 135.9, 132.8 (d, \(J = 9.7\) Hz), 132.0 (d, \(J = 3.3\) Hz), 131.0 (d, \(J = 13.1\) Hz), 131.3 (d, \(J = 2.7\) Hz), 129.1, 128.0, 127.5 (d, \(J = 13.1\) Hz), 126.4–126.23 (m), 121.3, 115.0 (d, \(J = 22.3\) Hz).

\(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta\) 25.6. HRMS (ESI) calcd. for C\(_{27}\)H\(_{20}\)FN\(_2\)OP [M]+: 438.1297; found: 438.1295.
The phosphinamide compound was obtained as a yellow solid.

N-(3-fluorophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3m)

The phosphinamide compound was obtained as a yellow solid.

N-(4-methoxyphenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3n)

The phosphinamide compound was obtained as a yellow solid.

P,P-diphenyl-N-(quinolin-8-yl)-N-(4-vinylphenyl)phosphinamide (3o)

S10
The phosphinamide compound was obtained as a yellow solid.
$R_f = 0.42$ (petroleum ether /ethyl acetate = 1/1), mp 114–116 °C.
1H NMR (400 MHz, CDCl$_3$) δ 8.95–8.89 (m, 1H), 7.96–7.89 (m, 5H), 7.79 (d, $J = 8.2$ Hz, 1H), 7.38 (d, $J = 8.1$ Hz, 1H), 7.25 (d, $J = 7.9$ Hz, 2H), 6.71 (d, $J = 7.9$ Hz, 2H), 7.21–7.14 (m, 2H), 7.05–6.98 (m, 6H), 1.97 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 150.0, 146.1 (d, $J = 3.2$ Hz), 143.0 (d, $J = 3.6$ Hz), 140.9 (d, $J = 2.5$ Hz), 135.7, 132.7 (d, $J = 9.7$ Hz), 132.6, 132.1, 132.1 (d, $J = 1.6$ Hz), 130.9 (d, $J = 2.6$ Hz), 130.8, 127.7, 127.3 (d, $J = 13.0$ Hz), 126.2 (d, $J = 1$ Hz), 123.8 (d, $J = 4.6$ Hz), 121.1, 20.4. 31P NMR (162 MHz, CDCl$_3$) δ 24.8. HRMS (ESI) calcd. for C$_{29}$H$_{23}$N$_2$OP [M^+]: 446.1548; found: 446.1543.

N-(4-formylphenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3p)

The phosphinamide compound was obtained as a yellow solid.
$R_f = 0.34$ (petroleum ether /ethyl acetate = 2/1), mp 134–136 °C.
1H NMR (400 MHz, CDCl$_3$) δ 9.65 (s, 1H), 8.94–8.93 (m, 1H), 7.94–7.87 (m, 5H), 7.77 (d, $J = 7.2$ Hz, 1H), 7.54 (d, $J = 8.1$ Hz, 1H), 7.44 (d, $J = 8.0$ Hz, 2H), 7.32–7.28 (m, 2H), 7.16–7.11 (m, 3H), 7.09–7.05 (m, 5H). 13C NMR (100 MHz, CDCl$_3$) δ 190.8, 151.3 (d, $J = 4.6$ Hz), 150.5, 145.9 (d, $J = 2.3$ Hz), 139.0 (d, $J = 2.2$ Hz), 136.0, 132.6 (d, $J = 10.1$ Hz), 132.5 (d, $J = 2.8$ Hz), 131.6 (d, $J = 2.7$ Hz), 131.1, 130.4, 130.1, 129.8, 128.9 (d, $J = 7.3$ Hz), 127.6 (d, $J = 13.3$ Hz), 126.5 (d, $J = 1.5$ Hz), 121.6, 120.4 (d, $J = 5.0$ Hz). 31P NMR (162 MHz, CDCl$_3$) δ 26.9. HRMS (ESI) calcd. for C$_{28}$H$_{21}$N$_2$O$_2$P [M^+]: 448.1341; found: 448.1335.

N-(3-formylphenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3q)

The phosphinamide compound was obtained as a yellow solid.
$R_f = 0.28$ (petroleum ether /ethyl acetate = 1/1), mp 128–130 °C.
1H NMR (400 MHz, CDCl$_3$) δ 9.71 (s, 1H), 9.04 (d, $J = 1.4$ Hz, 1H), 8.03–7.95 (m, 6H), 7.68 (d, $J = 8.0$ Hz, 1H), 7.64 (s, 1H), 7.60 (d, $J = 8.1$ Hz, 1H), 7.39–7.35 (m, 3H), 7.23–7.20 (m, 2H), 7.18–7.12 (m, 5H). 13C NMR (100 MHz, CDCl$_3$) δ 192.1, 150.4, 146.5 (d, $J = 4.2$ Hz), 146.0 (d, $J = 2.8$ Hz), 139.8 (d, $J = 2.2$ Hz), 136.6, 136.0, 132.7 (d, $J = 9.8$ Hz), 132.3 (d, $J = 3.0$ Hz), 131.4 (d, $J = 2.7$ Hz), 130.1, 129.0, 128.9, 128.5, 128.4 (d, $J = 4.7$ Hz), 127.5 (d, $J = 13.1$ Hz), 126.4 (d, $J = 0.9$ Hz), 123.9 (d, $J = 4.9$ Hz), 123.3, 121.5. 31P NMR (162 MHz, CDCl$_3$) δ 26.0. HRMS (ESI) calcd. for C$_{29}$H$_{21}$N$_2$O$_2$P [M^+]: 448.1341; found: 448.1332.
N-(4-acetylphenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3r)

The phosphinamide compound was obtained as a yellow solid.
$R_f = 0.23$ (petroleum ether/ethyl acetate = 1/1), mp 205–207 °C.
1H NMR (400 MHz, CDCl$_3$) δ 9.03 (s, 1H), 8.02–7.97 (m, 5H), 7.86 (d, $J = 6.9$ Hz, 1H), 7.64–7.60 (m, 3H), 7.40–7.35 (m, 2H), 7.24–7.20 (m, 2H), 7.15 (d, $J = 8.0$ Hz, 6H), 2.40 (s, 3H).
13C NMR (100 MHz, CDCl$_3$) δ 196.7, 150.4, 150.1 (d, $J = 4.5$ Hz), 145.9 (d, $J = 2.2$ Hz), 139.1 (d, $J = 1.7$ Hz), 136.0, 132.6 (d, $J = 10.0$ Hz), 132.4 (d, $J = 2.8$ Hz), 131.4–131.3 (m), 130.5, 130.0, 128.9, 128.8 128.7, 127.5 (d, $J = 13.2$ Hz), 126.4 (d, $J = 0.5$ Hz), 121.5, 119.9 (d, $J = 4.8$ Hz), 26.0. 31P NMR (162 MHz, CDCl$_3$) δ 26.3. HRMS (ESI) calcd. for C$_{29}$H$_{23}$N$_2$O$_2$P [M]$^+$: 462.1497; found: 462.1492.

N-(3-acetylphenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3s)

The phosphinamide compound was obtained as a yellow solid.
$R_f = 0.26$ (petroleum ether /ethyl acetate = 1/1), mp 156–158 °C.
1H NMR (400 MHz, CDCl$_3$) δ 8.96 (d, $J = 3.9$ Hz, 1H), 7.96–7.90 (m, 6H), 7.83 (s, 1H), 7.51 (d, $J = 8.1$ Hz, 1H), 7.42 (d, $J = 8.0$ Hz, 1H), 7.37 (d, $J = 7.6$ Hz, 1H), 7.30–7.26 (m, 2H), 7.18–7.11 (m, 2H), 7.07–6.99 (m, 5H), 2.25 (s, 3H).
13C NMR (100 MHz, CDCl$_3$) δ 197.8, 150.3, 145.9 (d, $J = 2.8$ Hz), 145.7 (d, $J = 4.0$ Hz), 139.8 (d, $J = 1.8$ Hz), 137.0, 135.9, 132.6 (d, $J = 9.8$ Hz), 132.2 (d, $J = 3.0$ Hz), 131.4–131.3 (m), 130.0, 128.9, 128.5, 128.3, 127.5 (d, $J = 13.1$ Hz), 127.3 (d, $J = 4.4$ Hz), 126.4, 122.9 (d, $J = 4.6$ Hz), 122.4, 121.4, 26.3. 31P NMR (162 MHz, CDCl$_3$) δ 25.8. HRMS (ESI) calcd. for C$_{29}$H$_{23}$N$_2$O$_2$P [M]$^+$: 462.1497; found: 462.1495.

N-(4-(methylsulfonyl)phenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3t)

The phosphinamide compound was obtained as a white solid. $R_f = 0.08$ (petroleum ether /ethyl acetate = 1/1), mp 250–251 °C.
1H NMR (400 MHz, CDCl$_3$) δ 8.97 (d, $J = 3.8$ Hz, 1H), 7.97 (d, $J = 8.2$ Hz, 1H), 7.94–7.86 (m, 4H), 7.77 (d, $J = 7.2$ Hz, 1H), 7.58 (d, $J = 8.2$ Hz, 1H), 7.48 (d, $J = 8.5$ Hz, 2H), 7.37–7.30 (m, 2H), 7.19–7.16 (m, 2H), 7.13–7.08 (m, 6H), 2.85 (s, 3H).
13C NMR (100 MHz, CDCl$_3$) δ 150.7 (d, $J = 1.2$ Hz), 150.6 (d, $J = 4.6$ Hz), 146.0 (d, $J = 2.6$ Hz), 139.0–138.9 (m), 136.1 (d, $J = 0.9$ Hz), 132.7 (d, $J = 10.0$ Hz), 132.5 (d, $J = 3.2$ Hz), 131.7, 131.1 (d, $J = 3.3$ Hz), 129.8 (d, $J = 3.3$ Hz), 129.0, 128.0 (d, $J = 0.8$ Hz), 127.7 (d, $J = 13.2$ Hz), 126.6, 121.8 (d, $J = 1.0$ Hz), 120.5, 120.4 (d, $J = 5.0$ Hz), 44.6. 31P NMR (162 MHz, CDCl$_3$) δ 27.0. HRMS (ESI) calcd. for C$_{28}$H$_{23}$N$_2$O$_3$PS [M]$^+$: 498.1167; found: 498.1162.
N-(3-((diphenylphosphoryl)(quinolin-8-yl)amino)phenyl)acetamide (3u)

The phosphinamide compound was obtained as a yellow solid. \(R_f = 0.51 \) (petroleum ether/ethyl acetate = 1/1), mp 123–125 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.90 (s, 1H), 8.46 (d, \(J = 56.0 \) Hz, 1H), 7.90 (s, 4H), 7.79 (d, \(J = 17.0 \) Hz, 2H), 7.42 (d, \(J = 23.4 \) Hz, 2H), 7.29 (s, 1H), 7.14 (d, \(J = 37.8 \) Hz, 4H), 7.01 (s, 5H), 6.83 (s, 1H), 1.78 (s, 3H).

\(^{13}\)C NMR (100 MHz, DMSO) \(\delta \) 168.5, 151.2, 146.6 (d, \(J = 4.1 \) Hz), 146.2 (d, \(J = 2.7 \) Hz), 140.52 (d, \(J = 9.4 \) Hz), 132.8 (d, \(J = 2.8 \) Hz), 131.95 (d, \(J = 1.2 \) Hz), 131.6, 129.4, 128.9 (d, \(J = 14.6 \) Hz), 128.2 (d, \(J = 12.5 \) Hz), 126.9, 122.3, 117.91 (d, \(J = 4.4 \) Hz), 114.2, 113.7 (d, \(J = 5.0 \) Hz), 24.3. \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta \) 26.2. HRMS (ESI) calcd. for C\(_{29}\)H\(_{24}\)N\(_3\)O\(_2\)P [M]\(^+\): 477.1606; found: 477.1600.

N-(4-cyanophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3v)

The phosphinamide compound was obtained as a white solid. \(R_f = 0.39 \) (petroleum ether/ethyl acetate = 1/1), mp 158–160 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.95 (d, \(J = 4.0 \) Hz, 1H), 7.94 (d, \(J = 8.3 \) Hz, 1H), 7.91–7.86 (m, 3H), 7.75 (d, \(J = 7.1 \) Hz, 1H), 7.55 (d, \(J = 8.1 \) Hz, 1H), 7.34–7.27 (m, 2H), 7.20–7.18 (m, 3H), 7.15 (d, \(J = 7.2 \) Hz, 2H), 7.05 (d, \(J = 8.4 \) Hz, 6H), \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 150.6, 149.6 (d, \(J = 4.8 \) Hz), 145.8 (d, \(J = 2.3 \) Hz), 138.7 (d, \(J = 2.2 \) Hz), 136.1, 132.6 (d, \(J = 10.1 \) Hz), 132.4, 131.7 (d, \(J = 2.8 \) Hz), 130.9, 129.6, 129.0–128.8 (m), 127.6 (d, \(J = 13.3 \) Hz), 126.5 (d, \(J = 1.5 \) Hz), 121.7, 120.6 (d, \(J = 5.0 \) Hz), 119.1, 104.4. \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta \) 27.0. HRMS (ESI) calcd. for C\(_{28}\)H\(_{20}\)N\(_3\)OP [M]\(^+\): 445.1344; found: 445.1339.

P,P-diphenyl-N-(quinolin-8-yl)-N-(4-(trifluoromethyl)phenyl)phosphinamide (3w)

The phosphinamide compound was obtained as a white solid. \(R_f = 0.53 \) (petroleum ether/ethyl acetate = 1/1), mp 98–100 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.96 (d, \(J = 4.0 \) Hz, 1H), 7.94–7.87 (m, 6H), 7.50 (d, \(J = 8.1 \) Hz, 1H), 7.30–7.26 (m, 2H), 7.23 (d, \(J = 8.5 \) Hz, 2H), 7.18–7.12 (m, 2H), 7.08–7.04 (m, 4H), 6.90 (d, \(J = 8.4 \) Hz, 2H), \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 150.5, 148.7 (d, \(J = 5.2 \) Hz), 146.0 (d, \(J = 2.4 \) Hz), 139.4, 136.0, 132.6 (d, \(J = 9.9 \) Hz), 132.4 (d, \(J = 2.7 \) Hz), 131.5–131.4 (m), 130.1, 128.8 (d, \(J = 25.5 \) Hz), 127.5 (d, \(J = 13.2 \) Hz), 126.4, 125.5–125.4 (m), 123.7, 123.4, 122.8, 121.5, 120.8 (d, \(J = 4.9 \) Hz), \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta \) 26.2. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta \) -61.7 (d, \(J = 3.4 \) Hz). HRMS (ESI) calcd. for C\(_{28}\)H\(_{20}\)F\(_3\)N\(_2\)OP [M]\(^+\): 488.1265; found: 488.1260.

P,P-diphenyl-N-(quinolin-8-yl)-N-(3-(trifluoromethyl)phenyl)phosphinamide (3x)

The phosphinamide compound was obtained as a white solid. \(R_f = 0.53 \) (petroleum ether/ethyl acetate = 1/1), mp 98–100 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.95 (d, \(J = 4.0 \) Hz, 1H), 7.94–7.87 (m, 6H), 7.50 (d, \(J = 8.1 \) Hz, 1H), 7.30–7.26 (m, 2H), 7.23 (d, \(J = 8.5 \) Hz, 2H), 7.18–7.12 (m, 2H), 7.08–7.04 (m, 4H), 6.90 (d, \(J = 8.4 \) Hz, 2H), \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 150.5, 148.7 (d, \(J = 5.2 \) Hz), 146.0 (d, \(J = 2.4 \) Hz), 139.4, 136.0, 132.6 (d, \(J = 9.9 \) Hz), 132.4 (d, \(J = 2.7 \) Hz), 131.5–131.4 (m), 130.1, 128.8 (d, \(J = 25.5 \) Hz), 127.5 (d, \(J = 13.2 \) Hz), 126.4, 125.5–125.4 (m), 123.7, 123.4, 122.8, 121.5, 120.8 (d, \(J = 4.9 \) Hz). HRMS (ESI) calcd. for C\(_{28}\)H\(_{20}\)F\(_3\)N\(_2\)OP [M]\(^+\): 488.1265; found: 488.1260.
The phosphinamide compound was obtained as a white solid. R_f = 0.59 (petroleum ether/ethyl acetate = 1/1), mp 162–164 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.95 (d, $J = 2.4$ Hz, 1H), 7.95–7.90 (m, 6H), 7.52–7.47 (m, 2H), 7.39 (s, 1H), 7.31–7.27 (m, 2H), 7.18–7.12 (m, 2H), 7.08–7.00 (m, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 150.4, 146.1–146.0 (m), 139.9 (d, $J = 2.3$ Hz), 136.0, 132.8 (d, $J = 9.8$ Hz), 132.3 (d, $J = 3.1$ Hz), 131.5–131.4 (m), 130.7, 130.4, 129.6 (d, $J = 115.0$ Hz), 128.7, 128.5, 127.6 (d, $J = 13.1$ Hz), 126.5 (d, $J = 1.2$ Hz), 126.0 (d, $J = 3.7$ Hz), 125.1, 122.4, 121.5–121.4 (m), 119.8–119.6 (m), 119.4–119.3 (m). 31P NMR (162 MHz, CDCl$_3$) δ 25.8. 19F NMR (376 MHz, CDCl$_3$) δ -62.7. HRMS (ESI) calcd. for C$_{28}$H$_{20}$F$_3$N$_2$O^+P: 488.1265; found: 488.1268.

N-(3,5-bis(trifluoromethyl)phenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3y)

The phosphinamide compound was obtained as a yellow solid. R_f 0.71 (petroleum ether/ethyl acetate = 1/1), mp 118–120 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.95 (d, $J = 1.9$ Hz, 1H), 7.97–7.89 (m, 6H), 7.57 (s, 3H), 7.35–7.31 (m, 2H), 7.26 (s, 1H), 7.17 (d, $J = 7.5$ Hz, 2H), 7.09 (s, 4H). 13C NMR (100 MHz, CDCl$_3$; list of signals, C–P and C–F coupling not resolved) δ 168.7, 150.6, 148.1, 146.9, 145.8, 145.8, 139.1, 139.1, 138.3, 138.2, 134.5, 132.8, 132.7, 132.2, 132.2, 131.8, 131.5, 131.2, 130.9, 129.6, 129.2, 129.0, 127.9, 127.9, 127.7, 127.4, 126.6, 126.4, 122.5, 122.4, 122.4, 121.8, 121.6, 121.4, 116.4, 116.1, 116.1, 116.0, 116.0. 31P NMR (162 MHz, CDCl$_3$) δ -63.0. HRMS (ESI) calcd. for C$_{29}$H$_{19}$F$_6$N$_2$O$_1$P^+M: 556.1139; found: 556.1134.

N-(4-nitrophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3z)

The phosphinamide compound was obtained as a yellow solid. R_f 0.31 (petroleum ether/ethyl acetate = 1/1), mp 143–145 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.04 (s, 1H), 8.05 (d, $J = 8.2$ Hz, 1H), 7.98 (s, 3H), 7.89 (d, $J = 8.2$ Hz, 2H), 7.84 (d, $J = 7.2$ Hz, 1H), 7.66 (d, $J = 8.1$ Hz, 1H), 7.45–7.39 (m, 2H), 7.26 (d, $J = 5.8$ Hz, 3H), 7.16–7.10 (m, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 151.6 (d, $J = 4.8$ Hz), 150.7, 145.7 (d, $J = 2.2$ Hz), 141.7, 138.7 (d, $J = 2.1$ Hz), 136.2, 132.6 (d, $J = 10.1$ Hz), 132.5 (d, $J = 2.7$ Hz), 131.9 (d, $J = 2.7$ Hz), 130.7 (d, $J = 4.9$ Hz), 129.3 (d, $J = 45.0$ Hz), 129.1 (d, $J = 1.2$ Hz), 127.8 (d, $J = 13.3$ Hz), 126.6 (d, $J = 1.3$ Hz), 124.3, 121.8, 119.9–119.8 (m). 31P NMR (162 MHz, CDCl$_3$) δ 27.6. HRMS (ESI) calcd. for C$_{27}$H$_{20}$N$_3$O$_3$P^+M: 465.1242; found: 465.1237.

N-phenyl-N-(quinolin-8-yl)-P,P-di-p-tolylphosphinamide (3ba)
The phosphinamide compound was obtained as a white solid. R_f = 0.33 (petroleum ether/ethyl acetate = 1/1), mp 97–99 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (d, J = 2.0 Hz, 1H), 7.89–7.86 (m, 2H), 7.82–7.77 (m, 4H), 7.46–7.42 (m, 1H), 7.28–7.23 (m, 4H), 6.92 (t, J = 7.5 Hz, 2H), 6.83 (d, J = 5.7 Hz, 4H), 6.76–6.72 (m, 1H), 2.06 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ 150.1, 146.3 (d, J = 2.9 Hz, 1H), 145.8 (d, J = 3.7 Hz, 1H), 141.3 (d, J = 2.8 Hz), 140.9 (d, J = 1.8 Hz), 135.8, 132.7 (d, J = 10.0 Hz), 132.4 (d, J = 3.2 Hz), 131.9 (d, J = 10.1 Hz), 129.1 (d, J = 6.4 Hz), 128.9, 128.2 (d, J = 13.6 Hz), 127.8, 126.4 (d, J = 1.0 Hz), 123.2 (d, J = 4.7 Hz), 122.7, 121.1, 21.3. ³¹P NMR (162 MHz, CDCl₃) δ 26.2. HRMS (ESI) calcd. for C₂₉H₂₅N₂O[P] [M]⁺: 448.1704; found: 448.1697.

N-phenyl-N-(quinolin-8-yl)-P,P-di-m-tolylphosphinamide (3ca)

The phosphinamide compound was obtained as a yellow solid. R_f = 0.51 (petroleum ether /ethyl acetate = 1/1), mp 145–147 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 2.2 Hz, 1H), 7.89–7.86 (m, 2H), 7.80–7.76 (m, J = 11.7 Hz, 2H), 7.71 (d, J = 12.6 Hz, 2H), 7.50–7.43 (m, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 3.6 Hz, 2H), 6.94–6.88 (m, 6H), 6.76–6.72 (m, 1H), 2.03 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ 149.9, 146.3 (d, J = 3.2 Hz), 145.7 (d, J = 3.7 Hz), 140.8 (d, J = 2.5 Hz, 137.0 (d, J = 12.9 Hz), 135.8, 133.3 (d, J = 9.8 Hz), 132.2–132.2 (m), 131.9 (d, J = 2.9 Hz), 131.3 (d, J = 129.8 Hz) 129.8 (d, J = 9.7 Hz), 129.1–128.9 (m), 128.2, 128.1 (d, J = 12.8 Hz), 127.9, 127.2 (d, J = 13.7 Hz), 126.3 (d, J = 1.3 Hz), 123.2 (d, J = 4.7 Hz), 121.9 (d, J = 170.0 Hz), 21.0. ³¹P NMR (162 MHz, CDCl₃) δ 26.0. HRMS (ESI) calcd. for C₂₉H₂₅N₂O[P] [M]⁺: 448.1704; found: 448.1699.

P,P-bis(4-fluorophenyl)-N-phenyl-N-(quinolin-8-yl)phosphinamide (3da)

The phosphinamide compound was obtained as a yellow solid. R_f = 0.62 (petroleum ether/ethyl acetate = 1/1), mp 97–99 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, J = 1.6 Hz, 1H), 8.06–7.96 (m, 6H), 7.67–7.60 (m, 1H), 7.41–7.35 (m, 4H), 7.04 (t, J = 7.4 Hz, 2H), 6.89–6.87 (m, 1H), 6.82 (t, J = 8.5 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5 (dd, J = 251.2 Hz, 3.4 Hz), 150.3, 146.2 (d, J = 3.1 Hz), 145.5 (d, J = 4.0 Hz), 140.6 (d, J = 2.5 Hz), 136.2, 135.4 (dd, J = 11.1 Hz, 8.8 Hz), 132.6 (d, J = 3.1 Hz), 129.1, 128.6, 128.3, 127.2 (dd, J = 135.2 Hz, 3.3 Hz), 126.6 (d, J = 1.5 Hz), 123.4, 123.3 (d, J = 4.9 Hz), 121.5, 114.9 (dd, J = 21.1, 14.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 23.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -107.4. HRMS (ESI) calcd. for C₂₇H₁₉F₂N₂O[P] [M]⁺: 456.1203; found: 456.1200.
P,P-bis(3-fluorophenyl)-N-phenyl-N-(quinolin-8-yl)phosphinamide (3ea)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.56$ (petroleum ether /ethyl acetate = 1/1), mp 125–127 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.98 (d, $J = 2.2$ Hz, 1H), 7.90 (t, $J = 8.9$ Hz, 2H), 7.76–7.69 (m, 4H), 7.50 (d, $J = 8.1$ Hz, 1H), 7.36–7.25 (m, 4H), 7.02–6.93 (m, 4H), 6.79 (t, $J = 7.4$ Hz, 3H). ^{13}C NMR (100 MHz, CDCl$_3$) δ 161.8 (dd, $J = 247.1$ Hz, 18.6 Hz), 150.4, 145.6 (dd, $J = 89.3$ Hz, 3.1 Hz), 140.2 (d, $J = 2.5$ Hz), 136.1, 133.6 (dd, $J = 133.7$ Hz), 129.4 (q, $J = 7.3$ Hz), 129.0, 128.7 (d, $J = 3.1$ Hz), 128.6, 128.6, 126.4, 126.5 (d, $J = 1.1$ Hz), 123.7, 123.5 (d, $J = 4.9$ Hz), 121.5, 119.6 (q, $J = 10.7$ Hz), 118.6 (dd, $J = 21.1$, 2.5 Hz). ^{31}P NMR (162 MHz, CDCl$_3$) δ 22.0 (t, $J = 6.8$ Hz). HRMS (ESI) calcd. for C$_{27}$H$_{19}$F$_2$N$_2$OP [M$^+$]: 456.1203; found: 456.1198.

P,P-bis(4-chlorophenyl)-N-phenyl-N-(quinolin-8-yl)phosphinamide (3fa)

The phosphinamide compound was obtained as a white solid. $R_f = 0.77$ (petroleum ether/ethyl acetate = 1/1), mp 225–227 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.97 (s, 1H), 7.97 (d, $J = 8.2$ Hz, 1H), 7.92–7.85 (m, 5H), 7.56 (d, $J = 8.1$ Hz, 1H), 7.34–7.29 (m, 4H), 7.04 (d, $J = 8.1$ Hz, 4H), 6.98 (t, $J = 7.4$ Hz, 2H), 6.83 (t, $J = 7.3$ Hz, 1H). ^{13}C NMR (100 MHz, CDCl$_3$) δ 150.3, 146.1 (d, $J = 2.8$ Hz), 145.2 (d, $J = 4.0$ Hz), 140.3 (d, $J = 2.6$ Hz), 138.0 (d, $J = 3.5$ Hz), 136.2, 134.3 (d, $J = 10.6$ Hz), 132.5 (d, $J = 3.2$ Hz), 129.6 (d, $J = 133.7$ Hz), 129.1, 128.6, 128.4, 127.9 (d, $J = 13.7$ Hz), 126.6 (d, $J = 1.2$ Hz), 123.6, 123.5 (d, $J = 4.9$ Hz), 121.5. ^{31}P NMR (162 MHz, CDCl$_3$) δ 22.0 (t, $J = 6.8$ Hz). HRMS (ESI) calcd. for C$_{27}$H$_{19}$Cl$_2$N$_2$OP [M$^+$]: 488.0612; found: 488.0607.

P,P-bis(4-methoxyphenyl)-N-phenyl-N-(quinolin-8-yl)phosphinamide (3ga)

The phosphinamide compound was obtained as a white solid. $R_f = 0.19$ (petroleum ether/ethyl acetate = 1/1), mp 284–286 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.94 (d, $J = 1.4$ Hz, 1H), 7.87–7.82 (m, 6H), 7.47 (d, $J = 8.1$ Hz, 1H), 7.26 (t, $J = 8.1$ Hz, 4H), 6.93 (t, $J = 7.4$ Hz, 2H), 6.74 (t, $J = 7.2$ Hz, 1H), 6.54 (d, $J = 8.0$ Hz, 4H), 3.54 (s, 6H). ^{13}C NMR (100 MHz, CDCl$_3$) δ 161.6 (d, $J = 2.8$ Hz), 150.1, 146.33 (d, $J = 2.8$ Hz), 145.8 (d, $J = 3.8$ Hz), 140.9 (d, $J = 2.2$ Hz), 135.9, 134.5 (d, $J = 11.1$ Hz), 132.4 (d, $J = 2.9$ Hz), 128.9, 128.2, 127.1 (d, $J = 141.4$ Hz), 123.8, 123.0 (d, $J = 4.5$ Hz), 122.6, 122.4, 121.2, 112.9 (d, $J = 14.0$ Hz), 54.9. ^{31}P NMR (162 MHz, CDCl$_3$) δ 25.5. HRMS (ESI) calcd. for C$_{29}$H$_{25}$O$_3$P [M$^+$]: 480.1603; found: 480.1597.
The phosphinamide compound was obtained as a white solid.

R_f = 0.25 (petroleum ether/ethyl acetate = 2/1), mp 92–95 °C.

\[\text{^1H NMR (400 MHz, CDCl}_3\text{)} \delta 7.73–7.68 (m, 4H), 7.54 (d, J = 7.8 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.22 (d, J = 7.7 Hz, 4H), 7.18–7.14 (m, 4H), 7.03–6.99 (m, 1H), 6.95–6.91 (m, 2H), 6.78–6.75 (m, 1H), 4.15 (t, J = 9.5 Hz, 2H), 3.87 (t, J = 9.5 Hz, 2H). \]

\[\text{^13C NMR (100 MHz, CDCl}_3\text{)} \delta 162.6, 145.3 (d, J = 2.5 Hz), 142.5 (d, J = 1.3 Hz), 132.8 (d, J = 2.9 Hz), 132.5 (d, J = 9.7 Hz), 131.7, 131.3 (d, J = 2.7 Hz), 131.2, 130.5 (d, J = 12.4 Hz), 128.3 (d, J = 4.1 Hz), 128.1, 127.6 (d, J = 12.9 Hz), 126.69, 124.6 (d, J = 5.2 Hz), 123.4, 66.6, 54.8. \]

\[\text{^31P NMR (162 MHz, CDCl}_3\text{)} \delta 25.4. \]

HRMS (ESI) calcd. for C_{27}H_{23}N_2O_2P [M]^+: 438.1497; found: 438.1495.
4. References

Copies of 1H, 13C, 31P, 19F NMR charts of the Compounds

1H NMR (400MHz, CDCl$_3$) spectrum of compound 1c

13C NMR (100MHz, CDCl$_3$) spectra of compound 1c
3P NMR (162MHz, CDCl$_3$) spectrum of compound 1c

1H NMR (400MHz, CDCl$_3$) spectrum of compound 1e
13C NMR (100MHz, CDCl$_3$) spectra of compound 1e

31P NMR (162MHz, CDCl$_3$) spectra of compound 1e
19F NMR (376MHz, CDCl$_3$) spectra of compound 1e

1H NMR (400MHz, CDCl$_3$) spectrum of compound 1h
13C NMR (100MHz, CDCl$_3$) spectra of compound 1h

31P NMR (162MHz, CDCl$_3$) spectra of compound 1h
1H NMR (400MHz, CDCl$_3$) spectrum of compound 1i

13C NMR (100MHz, CDCl$_3$) spectra of compound 1i
31P NMR (162MHz, CDCl$_3$) spectra of compound 1i

1H NMR (400MHz, CDCl$_3$) spectra of compound 3a
13C NMR (100MHz, CDCl$_3$) spectra of compound 3a

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3a
1H NMR (400MHz, CDCl$_3$) spectra of compound 3b

13C NMR (100MHz, CDCl$_3$) spectra of compound 3b
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3b

1H NMR (400MHz, CDCl$_3$) spectra of compound 3c
\[^{13}\text{C NMR (100MHz, CDCl}_3\text{)} \text{ spectra of compound 3c} \]

\[^{31}\text{P NMR (162MHz, CDCl}_3\text{)} \text{ spectrum of compound 3c} \]
^{1}H NMR (400MHz, CDCl$_3$) spectra of compound 3d

^{13}C NMR (100MHz, CDCl$_3$) spectra of compound 3d
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3d

1H NMR (400MHz, CDCl$_3$) spectra of compound 3e
13C NMR (100MHz, CDCl$_3$) spectra of compound 3e

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3e
1H NMR (400MHz, CDCl$_3$) spectra of compound 3f

13C NMR (100MHz, CDCl$_3$) spectra of compound 3f
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3f

1H NMR (400MHz, CDCl$_3$) spectra of compound 3g
13C NMR (100MHz, CDCl$_3$) spectra of compound 3g

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3g
1H NMR (400MHz, CDCl$_3$) spectra of compound 3h

13C NMR (100MHz, CDCl$_3$) spectra of compound 3h
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3h

1H NMR (400MHz, CDCl$_3$) spectra of compound 3i
13C NMR (100MHz, CDCl$_3$) spectra of compound 3i

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3i
19F NMR (376MHz, CDCl$_3$) spectrum of compound 3i

1H NMR (400MHz, CDCl$_3$) spectra of compound 3j
13C NMR (100MHz, CDCl$_3$) spectra of compound 3j

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3j
1H NMR (400MHz, CDCl$_3$) spectra of compound 3k

13C NMR (100MHz, CDCl$_3$) spectra of compound 3k
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3k

1H NMR (400MHz, CDCl$_3$) spectra of compound 3l
$^{13}\text{C NMR (100MHz, CDCl}_3\text{)}$ spectra of compound 3l

$^{31}\text{P NMR (162MHz, CDCl}_3\text{)}$ spectrum of compound 3l
1H NMR (400MHz, CDCl$_3$) spectra of compound 3m

13C NMR (100MHz, CDCl$_3$) spectra of compound 3m
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3m

19F NMR (376MHz, CDCl$_3$) spectrum of compound 3m
1H NMR (400MHz, CDCl$_3$) spectra of compound 3n

13C NMR (100MHz, CDCl$_3$) spectra of compound 3n
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3n

1H NMR (400MHz, CDCl$_3$) spectra of compound 3o
13C NMR (100MHz, CDCl$_3$) spectra of compound 3o

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3o
1H NMR (400MHz, CDCl$_3$) spectra of compound 3p

13C NMR (100MHz, CDCl$_3$) spectra of compound 3p
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3p

1H NMR (400MHz, CDCl$_3$) spectra of compound 3q
13C NMR (100MHz, CDCl$_3$) spectra of compound 3q

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3q
1H NMR (400MHz, CDCl$_3$) spectra of compound 3r

13C NMR (100MHz, CDCl$_3$) spectra of compound 3r
3P NMR (162MHz, CDCl$_3$) spectrum of compound 3r

1H NMR (400MHz, CDCl$_3$) spectra of compound 3s
^{13}C NMR (100MHz, CDCl$_3$) spectra of compound 3s

^{31}P NMR (162MHz, CDCl$_3$) spectrum of compound 3s
1H NMR (400MHz, CDCl$_3$) spectra of compound 3t

13C NMR (100MHz, CDCl$_3$) spectra of compound 3t
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3t

1H NMR (400MHz, CDCl$_3$) spectra of compound 3u
13C NMR (100MHz, CD$_3$SOCD$_3$) spectra of compound 3u

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3u
1H NMR (400MHz, CDCl$_3$) spectra of compound 3v

13C NMR (100MHz, CDCl$_3$) spectra of compound 3v
$^{31}\text{P NMR (162MHz, CDCl}_3\text{)}$ spectrum of compound 3v

$^{1}\text{H NMR (400MHz, CDCl}_3\text{)}$ spectra of compound 3w
13C NMR (100MHz, CDCl$_3$) spectra of compound 3w

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3w
19F NMR (376MHz, CDCl$_3$) spectrum of compound 3w

1H NMR (400MHz, CDCl$_3$) spectra of compound 3x
13C NMR (100MHz, CDCl$_3$) spectra of compound 3x

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3x
19F NMR (376MHz, CDCl$_3$) spectrum of compound $3x$

1H NMR (400MHz, CDCl$_3$) spectra of compound $3y$
13C NMR (100MHz, CDCl$_3$) spectra of compound 3y

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3y
19F NMR (376MHz, CDCl$_3$) spectrum of compound 3y

1H NMR (400MHz, CDCl$_3$) spectra of compound 3z
13C NMR (100MHz, CDCl$_3$) spectra of compound 3z

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3z
\(^1\)H NMR (400MHz, CDCl\(_3\)) spectra of compound 3ba

\(^{13}\)C NMR (100MHz, CDCl\(_3\)) spectra of compound 3ba
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3ba

1H NMR (400MHz, CDCl$_3$) spectra of compound 3ca
13C NMR (100MHz, CDCl$_3$) spectra of compound 3ca

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3ca
1H NMR (400MHz, CDCl$_3$) spectra of compound 3da

13C NMR (100MHz, CDCl$_3$) spectra of compound 3da
31P NMR (162MHz, CDCl$_3$) spectra of compound 3da

19F NMR (376MHz, CDCl$_3$) spectrum of compound 3da
1H NMR (400MHz, CDCl$_3$) spectra of compound 3ea

13C NMR (100MHz, CDCl$_3$) spectra of compound 3ea
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3ea

19F NMR (376MHz, CDCl$_3$) spectrum of compound 3ea
1H NMR (400MHz, CDCl$_3$) spectra of compound 3fa

13C NMR (100MHz, CDCl$_3$) spectra of compound 3fa
31P NMR (162MHz, CDCl$_3$) spectrum of compound 3fa

1H NMR (400MHz, CDCl$_3$) spectra of compound 3ga
13C NMR (100MHz, CDCl$_3$) spectra of compound 3ga

31P NMR (162MHz, CDCl$_3$) spectrum of compound 3ga
1H NMR (400MHz, CDCl$_3$) spectra of compound 4

13C NMR (100MHz, CDCl$_3$) spectra of compound 4
31P NMR (162MHz, CDCl$_3$) spectrum of compound 4