Supporting Information

Silver(I)-catalyzed sequential hydroamination and Prins type cyclization for the synthesis of fused benzo-δ-sultams

B. Maheshwar Raoa, J. S. Yadava, B. Sridharb, B. V. Subba Reddya*

aCentre for Semiochemicals, bLaboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. Email: basireddy@iict.res.in, Fax: 91-40-27160512

![Chemical structure](image)

S. No	Contents	Page
1. | Experimental procedure | S2-S3
2. | Spectral data of products (4a-aa) | S3-S18
3. | 1H & 13C NMR spectra of products | S19-S45
4. | X-ray crystal structure of 4d | S46
1. Experimental procedures

![Chemical reaction diagram]

Reagents and conditions: (i) 40% Monomethylamine solution, CHCl₃, reflux (ii) n-BuLi, THF, I₂ (iii) [PdCl₂(PPh₃)₂], CuI, CH₃CN, Et₃N

Synthesis of N,4-dimethylbenzenesulfonamide (A)

To a stirred solution of tosyl chloride (10g, 1 equiv, 0.052 mmol) in chloroform (100 mL) at 0 °C was added 40% aqueous solution of monomethyl amine (4g, ~15ml, 0.12 mmol) drop wise. The resulting mixture was heated under reflux for about 4h. After completion, the solvent was removed under reduced pressure and the residue was dissolved in chloroform and washed with dil.HCl (1x50mL) followed by a brine solution. The organic layer was dried over Na₂SO₄ and concentrated under vacuum to obtain the desired compound 1a (9.25g, 95% yield).

Synthesis of 2-iodo-N,4-dimethylbenzenesulfonamide (B)

To a solution of N,4-dimethylbenzenesulfonamide (5g, 0.027 mmol) in THF (50 mL) was cooled to 0 °C under nitrogen atmosphere and treated with a solution of n-BuLi in hexane (14 mL, 0.059 mmol) dropwise. The mixture was stirred at 0 °C for 15 min and then warmed to room temperature. After stirring for 1h at room temperature, the resulting bright yellow solution was cooled to -78 °C and stirred for 15 min. Then a solution of iodine (7.55g, 0.03 mmol) in THF (40mL) was added and the resulting mixture was stirred at -78 °C for 1h and then quenched with a sat. solution of NH₄Cl (40 mL) and washed with a sat. solution of Na₂S₂O₃ (100 mL) and then extracted with ethyl acetate. The organic layers were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified using EtOAc/hexane to obtain the desired compound 2a (7.1g, 85% yield).

Synthesis of 2-(4-hydroxybut-1-yn-1-yl)-N,4-dimethylbenzenesulfonamide by Sonogashira reaction (3a):
To a N$_2$-degassed solution of 2-iodo-N,4-dimethylbenzenesulfonamide (0.064 mmol), Pd(PPh$_3$)$_2$Cl$_2$ (2 mol%) and CuI (2 mol%), triethylamine (1.92 mmol, 3 equiv) was added 3-butyne-1-ol (1.92 mmol, 3 equiv) and the mixture was stirred at 80 ºC for 10 h. After completion, as indicated by TLC, the mixture was diluted with EtOAc, filtered through celite and the filterate was collected and concentrated under vaccum. The resulting residue was purified by column chromatography on silica gel (60-120mesh) using a gradient mixture of ethyl acetate/hexane to give the compound 3a. 1H NMR (400 MHz, CDCl$_3$): δ 7.90 (d, $J = 8.0$ Hz, 1H), 7.37 (s, 1H), 7.22 (d, $J = 8.8$ Hz, 1H), 6.22 (s, 1H), 3.89 (t, $J = 5.4$ Hz 2H), 2.73 (t, $J = 5.6$ Hz, 2H), 2.54 (d, $J = 5.3$ Hz, 3H), 2.38(s, 3H); 13C NMR (400 MHz, CDCl$_3$): δ 142.7, 138.1, 134.0, 129.4, 128.5, 120.9, 96.5, 78.6, 60.7, 29.3, 23.7, 21.0.

General procedure for the preparation of 4:

An oven dried RB flask was charged with compound 3 (50 mg, 1 equiv) and dissolved in toluene (3 mL) and then was added the respective aldehyde 2 (1.1 equiv) under inert atmosphere. The mixture was cooled to 0 ºC and then AgSbF$_6$(5 mol%) was added. The resulting mixture was stirred at 25 ºC and then heated to 80 ºC. After completion, as monitored by TLC, the mixture was quenched with 5 mL of ice water and 5 mL of ethyl acetate. The organic layer was separated and dried over sodium sulfate. Removal of the solvent followed by purification on silica gel (60-120 mesh) using a gradient mixture of ethyl acetate/hexane afforded the corresponding product 4.

2. Spectral data of products (4a-aa)

5,9-Dimethyl-1-phenyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4a; Table 2):

Yield, 91%; Solid; mp 193-195 ºC; 1H NMR (400 MHz, CDCl$_3$): δ 7.75 (d, $J = 8.0$ Hz, 1H), 7.39 – 7.34 (m, 2H), 7.33 – 7.24 (m, 3H), 7.17 (d, $J = 7.5$ Hz, 1H), 6.90 (s, 1H), 6.97 (s, 1H), 3.89 –
3.83 (m, 2H), 3.30 (s, 3H), 2.81 – 2.72 (m, 1H), 2.64 – 2.56 (m, 1H), 2.25 (s, 3H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 142.2, 139.5, 136.7, 131.7, 131.5, 129.1, 128.8, 128.5, 128.3, 128.0, 124.0, 121.6, 115.3, 74.6, 59.2, 30.4, 26.8, 21.8; IR (neat) \(\nu_{\text{max}}\) 3422, 2928, 2873, 1609, 1465, 1370, 1321, 1250, 1174, 1126, 1027, 931, 895, 825, 762, 702, 579, 545, 508, 431 cm\(^{-1}\); MS (ESI): \(m/z\) 342 (M+H\(^+\)). HRMS (ESI) calcd for C\(_{19}\)H\(_{20}\)NO\(_3\): 342.11584 (M+H\(^+\)), found 342.11572.

5,9-Dimethyl-1-(o-tolyl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4b; Table 2):

Yield, 90%; Solid; mp 155 - 158 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.75 (d, \(J = 8.0\) Hz, 1H), 7.25 – 7.22 (m, 1H), 7.20 – 7.15 (m, 2H), 7.10 – 7.01 (m, 2H), 6.75 (s, 1H), 6.17 (s, 1H), 3.85 – 3.81(dd, \(J = 4.0\) Hz, \(J = 7.2\) Hz, 2H), 3.31 (s, 3H), 2.84 – 2.24 (m, 1H), 2.62 (s, 3H), 2.61 – 2.54 (m, 1H), 2.25 (s, 3H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 142.2, 137.5, 137.0, 136.7, 131.5, 130.8, 129.6, 128.9, 128.3, 128.1, 125.8, 123.8, 121.8, 115.8, 71.5, 58.9, 30.5, 27.0, 21.9, 19.1; IR (neat) \(\nu_{\text{max}}\) 3450, 2924, 2876, 1617, 1475, 1359, 1323, 1250, 1174, 1119, 1087, 986, 923, 880, 827, 753, 719, 668, 625, 595, 548, 464 cm\(^{-1}\); MS (ESI): \(m/z\) 356 (M+H\(^+\)). HRMS (ESI) calcd for C\(_{20}\)H\(_{22}\)O\(_3\)NS: 356.13149 (M+H\(^+\)), found 356.13155.

1-(4-Chlorophenyl)-5,9-dimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4c; Table 2):
Yield, 95%; mp 198-200 °C; Solid; \(^1\)H NMR (400 MHz, CDCl\(_3\)):\(\delta 7.75(\text{d}, J = 8.0 \text{ Hz}, 1\text{H}), 7.32 - 7.27(\text{m}, 4\text{H}), 7.20(\text{d}, J = 8.0 \text{ Hz}, 1\text{H}), 6.86(\text{s}, 1\text{H}), 5.94(\text{s}, 1\text{H}), 3.87 - 3.83(\text{m}, 2\text{H}), 3.30(\text{s}, 3\text{H}), 2.80 - 2.72(\text{m}, 1\text{H}), 2.64 - 2.57(\text{m}, 1\text{H}), 2.28(\text{s}, 3\text{H}); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)):\(\delta 142.3, 138.2, 136.9, 134.2, 131.3, 130.5, 128.9, 128.7, 128.2, 123.8, 121.7, 114.9, 73.9, 59.3, 30.4, 26.7, 21.9; IR (neat) \(\nu_{\text{max}}\) 3451, 2965, 2925, 1618, 1596, 1487, 1455, 1412, 1366, 1341, 1295, 1245, 1180, 1131, 1094, 1018, 987, 925, 896, 822, 792, 715, 698, 578, 552, 517, 446 cm\(^{-1}\); MS (ESI): \(m/z\) 376 (M+H\(^+\)). HRMS (ESI) calcd for C\(_{19}\)H\(_{19}\)O\(_3\)N Cl S: 376.07687 (M+H\(^+\)), found 376.07759.

1-(4-Fluorophenyl)-5,9-dimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4d; Table 2):

![Diagram of 4d]

Yield, 90%; Solid; mp 194-195 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)):\(\delta 7.75 (\text{d}, J = 8.0 \text{ Hz}, 1\text{H}), 7.36 - 7.31 (\text{m}, 2\text{H}), 7.19 (\text{d}, J = 8.8 \text{ Hz}, 1\text{H}), 7.01 - 6.96 (\text{m}, 2\text{H}), 6.87 (\text{s}, 1\text{H}), 5.95 (\text{s}, 1\text{H}), 3.88 - 3.83 (\text{m}, 2\text{H}), 3.30 (\text{s}, 3\text{H}), 2.80 - 2.27 (\text{m}, 1\text{H}), 2.65 - 2.58 (\text{m}, 1\text{H}), 2.27 (\text{s}, 3\text{H}); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)):\(\delta 142.2, 136.8, 135.6, 131.4, 130.9, 130.9, 128.9, 128.2, 123.9, 121.7, 115.6, 115.3, 115.2, 73.9, 59.3, 30.5, 26.8, 21.8; IR (neat) \(\nu_{\text{max}}\) 3447, 3055, 2962, 2918, 2859, 1623, 1598, 1568, 1474, 1427, 1364, 1319, 1255, 1173, 1126, 1099, 1068, 1031, 992, 881, 820, 788, 694, 666, 585 cm\(^{-1}\); MS (ESI): \(m/z\) 360 (M+H\(^+\)). HRMS (ESI) calcd for C\(_{19}\)H\(_{18}\)FNO\(_3\)S: 360.10849 (M+H\(^+\)), found 360.10642.

1-(3-Bromophenyl)-5,9-dimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4e; Table 2):

![Diagram of 4e]
Yield, 88%; Solid; mp 196-198 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.76 (d, \(J = 8.1\) Hz, 1H), 7.60 (s, 1H), 7.43 – 7.38 (m, 1H), 7.24 – 7.12 (m, 3H), 6.88 (m, 3H), 5.93 (s, 1H), 3.88 – 3.81 (m, 2H), 3.31 (s, 3H), 2.83 – 2.71 (m, 1H), 2.65 – 2.55 (m, 1H), 2.29 (s, 3H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 142.4, 141.9, 137.0, 132.3, 131.5, 131.3, 130.1, 128.8, 128.2, 127.7, 123.7, 122.6, 121.8, 114.5, 73.8, 59.2, 30.4, 26.7, 21.9; IR (neat) \(\nu_{\text{max}}\) 3447, 3055, 2962, 2918, 2859, 1623, 1598, 1568, 1474, 1427, 1364, 1319, 1255, 1173, 1126, 1099, 1068, 1031, 992, 881, 820, 788, 694, 666, 585 cm\(^{-1}\); MS (ESI): \(m/z\) 420 (M+H)\(^+\). HRMS (ESI) calcd for C\(_{19}\)H\(_{19}\)BrNO\(_3\)S: 420.02818 (M+H)\(^+\), found 420.02635.

5,9-Dimethyl-1-(4-nitrophenyl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4f; Table 2):

![Image](image.png)

Yield, 78%; Solid; mp 202-204 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.16 (d, \(J = 8.6\) Hz, 2H), 7.77(d, \(J = 8.0\) Hz, 1H), 7.54(d, \(J = 8.6\) Hz, 2H), 7.22 (d, \(J = 8.6\) Hz, 1H), 6.83(s, 1H), 6.04 (s,1H), 3.95 – 3.81 (m, 2H), 3.32 (s, 3H), 2.83 – 2.73 (m, 1H), 2.70 – 2.61 (m,1H), 2.28 (s, 3H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 147.8, 146.8, 142.5, 137.3, 131.1, 130.1, 129.0, 128.4, 123.8, 123.5, 121.9, 114.1, 73.7, 60.0, 30.0, 26.7, 21.8; IR (neat) \(\nu_{\text{max}}\) 3448, 2921, 2858, 1614, 1524, 1481, 1349, 1327, 1248, 1175, 1128, 1104, 1065, 1035, 930, 898, 856, 826, 796, 751, 719, 684, 577, 548, 517, 442, 420 cm\(^{-1}\); MS (ESI): \(m/z\) 409 (M+Na)\(^+\). HRMS (ESI) calcd for C\(_{19}\)H\(_{18}\)O\(_5\)N\(_2\)S: 409.08465 (M+Na)\(^+\), found 409.08286.

4-(5,9-Dimethyl-6,6-dioxido-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazin-1-yl)benzonitrile (4g; Table 2):
Yield, 81%; mp 180-182 ºC; Solid; 1H NMR (400 MHz, CDCl$_3$): δ 7.76 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.0 Hz, 1H), 6.82(s, 1H), 3.93 – 3.80(m, 2H), 3.32 (s, 3H), 2.80 – 2.73 (m, 1H), 2.28 (s, 3H); 13C NMR (400 MHz, CDCl$_3$): δ 144.9, 142.4, 137.3, 132.4, 131.2, 129.8, 128.9, 128.4, 123.5, 121.8, 118.4, 114.0, 112.2, 74.0, 55.9, 30.4, 26.6, 21.8; IR (neat) ν_{max} 3421, 3095, 2987, 2927, 2879, 2228, 1934, 1616, 1506, 1477, 1413, 1365, 1338, 1296, 1245, 1180, 1130, 1098, 1057, 1030, 990, 926, 895, 835, 792, 713, 681, 654, 574, 548, 514, 445 cm$^{-1}$; MS (ESI): m/z 367 (M+H)$^+$. HRMS (ESI) calcd for C$_{20}$H$_{19}$O$_3$N$_2$S: 367.11109 (M+H)$^+$, found 367.11133.

1-(4-Methoxyphenyl)-5,9-dimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4h; Table 2):

Yield 84%; Solid; mp 116-118 ºC; 1H NMR (400 MHz, CDCl$_3$): δ 7.71(d, J = 8.0 Hz ,1H), 7.24 (m, 1H), 7.16 (d, J = 7.9 Hz, 1H), 7.13 (dd, J = 7.5 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.91 (s, 1H), 6.82 (t, J = 7.3 Hz, 1H), 6.47 (s, 1H), 4.00 (s, 3H), 3.96 – 3.84 (m, 2H), 3.29 (s, 3H), 2.80 – 2.72 (m, 1H), 2.66 – 2.59 (m, 1H), 2.26 (s, 1H); 13C NMR (400 MHz, CDCl$_3$): δ 157.4, 142.0, 136.4, 130.5, 130.2, 129.7, 128.9, 128.0, 127.4, 123.9, 121.6, 120.5, 116.0, 110.6, 68.0, 59.3, 55.8, 30.6, 26.8, 21.9; IR (neat) ν_{max} 3448, 2954, 2858, 2809, 1612, 1559, 1511, 1472, 1370, 1317, 1292, 1245, 1200, 1174, 1125, 1104, 1065, 1029, 990, 926, 896, 830, 796, 714, 686, 619, 575, 547, 511, 471 cm$^{-1}$; MS (ESI): m/z 372 (M+H)$^+$. HRMS (ESI) calcd for C$_{20}$H$_{22}$NO$_4$S: 372.12641 (M+H)$^+$, found 372.12795.
1-(3-Hydroxy-4-methoxyphenyl)-5,9-dimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4i; Table 2):

Yield, 76%; Solid; mp 154-155 °C; \(^{1}H\) NMR (400 MHz, CDCl\(_3\)): \(\delta 7.74\) (d, \(J = 8.0\) Hz, 1H), 7.18 (d, \(J = 7.4\) Hz, 1H), 7.02 (d, \(J = 1.9\) Hz , 1H), 6.92 (s, 1H), 6.80 – 6.72 (m, 2H), 6.88 (s, 1H), 5.6 (s, 1H), 3.89 – 3.84 (m, 2H), 3.83 (s, 2H), 3.39 (s, 3H), 2.81 – 2.27 (m, 1H), 2.60 – 2.56 (m, 1H), 2.28 (s, 3H); \(^{13}C\) NMR (400 MHz, CDCl\(_3\)): \(\delta 146.5, 145.5, 142.2, 136.5, 132.7, 131.6, 128.8, 128.0, 124.0, 121.6, 121.1, 115.5, 115.3, 110.3, 74.0, 58.7, 55.8, 30.5, 26.8, 21.9; IR (neat) \(\nu_{max}\) 3615, 2937, 1622, 1595, 1599, 1444, 1329, 1271, 1233, 1200, 1175, 1126, 1095, 1020, 876, 816, 792, 762, 716, 661, 600, 550, 467 cm\(^{-1}\); MS (ESI): \(m/z\) 388 (M+H\(^{+}\)). HRMS (ESI) calcd for C\(_{20}\)H\(_{22}\)NO\(_{5}\)S: 388.12132 (M+H\(^{+}\)), found 388.12322.

5,9-Dimethyl-1-(3-phenoxyphenyl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine 6,6-dioxide (4j; Table 2):

Yield, 85%; Solid; mp 177-179 °C; \(^{1}H\) NMR (400 MHz, CDCl\(_3\)): \(\delta 7.75\) (d, \(J = 7.9\) Hz, 1H), 7.32 – 7.18 (m, 4H), 7.13 – 7.03 (m, 3H), 6.96 – 6.92 (d, \(J = 7.9\) Hz, 2H), 6.92 – 6.88 (m, 2H), 5.90 (s, 1H), 3.95 – 3.83 (m, 2H), 3.29 (s, 3H), 2.79 – 2.71 (m, 1H), 2.65 – 2.57 (m, 1H), 2.30 (s, 3H); \(^{13}C\) NMR (400 MHz, CDCl\(_3\)): \(\delta 157.3, 156.9, 142.1, 141.7, 136.8, 131.5, 129.9, 129.6, 128.9, 128.1, 124.0, 123.8, 123.2, 121.8, 119.7, 118.8, 118.7, 115.1, 74.5, 59.5, 30.4, 26.8, 21.9; IR (neat) \(\nu_{max}\) 3448, 3054, 2967, 2864, 1590, 1483, 1449, 1374, 1315, 1247, 1208, 1183, 1128,
1104, 1067, 999, 934, 876, 826, 798, 756, 695, 551, 510, 462 cm⁻¹; MS (ESI): m/z 434 (M+H)⁺.
HRMS (ESI) calcd for C₂₅H₂₄NO₄S: 434.14206 (M+H)⁺, found 434.14117.

1-(4-Methoxynaphthalen-2-yl)-5,9-dimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine 6,6-dioxide (4k; Table 2):

Yield, 87%; Solid; mp 218-220 ºC; ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.78(d, J = 8.0 Hz, 2H), 7.68 – 7.63(m, 1H), 7.58 – 7.53(m, 1H), 7.33 – 7.25(m, 2H), 7.19 – 7.15 (d, J = 8.4 Hz, 2H), 6.81(d, J = 8.4 Hz, 2H), 3.90 – 3.83 (m, 1H), 3.80 – 3.72 (m, 1H), 3.34 (s, 3H), 2.94 – 2.83 (m, 1H), 2.56 – 2.49 (m, 1H), 2.15 (s, 3H); ¹³C NMR (400 MHz, CDCl₃): δ 142.3, 136.9, 134.1, 132.0, 131.5, 129.1, 128.7, 128.7, 128.4, 128.2, 126.5, 125.7, 125.0, 124.0, 123.5, 115.4, 70.4, 58.4, 30.4, 26.9, 21.8; IR (neat) ν_{max} 3424, 3056, 2917, 2888, 1937, 1610, 1599, 1507, 1472, 1399, 1365, 1327, 1294, 1249, 1205, 1179, 1124, 1091, 1045, 980, 927, 877, 829, 779, 736, 709, 682, 664, 637, 592, 553, 517, 466, 440 cm⁻¹; MS (ESI): m/z 392 (M+H)⁺. HRMS (ESI) calcd for C₂₃H₂₂NO₃S 392.13370 (M+H)⁺, found 392.13149.

1-(4-Methoxynaphthalen-1-yl)-5,9-dimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4l; Table 2):

Yield, 85%; Solid; mp 211-213 ºC; ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 8.08 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.57 – 7.53(m, 1H), 7.19 – 7.16 (m, 2H), 6.85 (s, 1H),
6.73 (s, 1H), 6.03 (d, J = 7.9 Hz, 1H), 3.93 (s, 3H), 3.87 – 3.82 (m, 1H), 3.81 – 3.74 (m, 1H), 3.33 (s, 1H), 2.92 – 2.84 (m, 1H), 2.53 – 2.47 (m, 1H), 2.71 (s, 3H); 13C NMR (400 MHz, CDCl$_3$): δ 155.7, 142.4, 136.7, 132.9, 131.7, 129.0, 128.8, 128.2, 127.0, 126.1, 125.1, 123.6, 122.5, 121.6, 115.8, 102.7, 70.1, 58.0, 55.3, 30.5, 26.9, 21.8; IR (neat) ν_{max} 3445, 3046, 2971, 2938, 2859, 1596, 1510, 1479, 1461, 1422, 1386, 1318, 1296, 1265, 1210, 1174, 1155, 1123, 1091, 1062, 1043, 961, 929, 878, 840, 814, 757, 713, 660, 630, 597, 546, 508, 463, 417 cm$^{-1}$; MS (ESI): m/z 422 (M+H)$^+$. HRMS (ESI) calcd for C$_{24}$H$_{24}$NO$_4$S 422.14206 (M+H)$^+$, found 422.14344.

1-(Furan-2-yl)-5,9-dimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4m; Table 2):

Yield, 84%; Solid; mp 162-163 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.76 (d, J = 8.0 Hz, 1H), 7.44 (s, 1H), 7.23 (d, J = 8.0 Hz, 1H), 6.97 (s, 1H), 6.25 (m, 1H), 6.17 (d, J = 3.3 Hz, 1H), 6.05 (s, 1H), 3.96 – 3.91 (m, 1H), 3.89 – 3.83 (m, 1H), 3.28 (s, 3H), 2.87 – 2.79 (m, 1H), 2.47 – 2.41 (m, 1H), 2.34 (s, 3H); 13C NMR (400 MHz, CDCl$_3$): δ 151.9, 143.1, 142.4, 136.6, 131.2, 128.9, 128.3, 123.2, 121.7, 113.6, 112.2, 110.4, 67.0, 58.2, 30.3, 26.3, 21.8; IR (neat) ν_{max} 3449, 3131, 3065, 2985, 2932, 1623, 1596, 1482, 1366, 1325, 1252, 1216, 1176, 1130, 1084, 1020, 929, 876, 822, 758, 712, 648, 596, 547, 430 cm$^{-1}$; MS (ESI): m/z 332 (M+H)$^+$. HRMS (ESI) calcd for C$_{17}$H$_{18}$O$_4$NS: 332.09511 (M+H)$^+$, found 332.09503.

5,9-Dimethyl-1-(5-nitrothiophen-2-yl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4n; Table 2):
Yield, 80%; Solid; mp 160-161 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.80 (d, $J = 7.9$ Hz, 1H), 7.68 (d, $J = 4.1$ Hz, 1H), 7.28 (d, $J = 8.0$ Hz, 1H), 7.01 (s, 1H), 6.81 (d, $J = 4.8$ Hz, 1H), 6.16 (s, 1H), 4.04 – 3.97 (m, 1H), 3.92 – 3.84 (m, 1H), 3.31 (s, 3H), 2.90 – 2.79 (m, 1H), 2.48 – 2.45 (dt, $J = 3.1$ Hz, 1H), 2.37 (s, 3H); 13C NMR (400 MHz, CDCl$_3$): δ 152.2, 151.4, 142.8, 137.3, 130.7, 128.7, 128.1, 122.9, 122.0, 113.1, 68.9, 59.0, 30.2, 26.2, 21.9; IR (neat) ν_{max} 3447, 3101, 2917, 1610, 1544, 1507, 1478, 1444, 1341, 1292, 1251, 1174, 1122, 1099, 1029, 991, 888, 816, 793, 730, 713, 598, 573, 547, 516, 469 cm$^{-1}$; MS (ESI): m/z 393 (M+H)$^+$. HRMS (ESI) calcd for C$_{17}$H$_{17}$O$_5$N$_2$S$_2$: 393.05734 (M+H)$^+$, found 393.05798.

5,9-Dimethyl-1-(pyridin-2-yl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4o; Table 2):

Yield, 79%; Solid; mp 190-192 °C; 1H NMR (400 MHz, CDCl$_3$): δ 8.75 (s, 1H), 8.52 (s, 1H), 7.76 (d, $J = 8.0$ Hz, 1H), 7.56 (td, $J = 9.6$ Hz, 1H), 7.23 – 7.18 (m, 2H), 6.86 (s, 1H), 6.03 (s, 1H), 3.94 – 3.82 (m, 2H), 3.31 (s, 3H), 2.81-2.72 (m, 1H), 2.69 – 2.61 (m, 1H), 2.27 (s, 3H); 13C NMR (400 MHz, CDCl$_3$): δ 150.7, 149.5, 142.4, 137.3, 136.3, 135.4, 131.1, 129.0, 128.3, 123.7, 123.5, 121.8, 114.2, 72.6, 59.7, 30.5, 26.7, 21.8; IR (neat) ν_{max} 3448, 2919, 2870, 1600, 1478, 1426, 1370, 1312, 1251, 1180, 1129, 1104, 1063, 1025, 990, 930, 826, 796, 717, 689, 614, 551 cm$^{-1}$; MS (ESI): m/z 343 (M+H)$^+$. HRMS (ESI) calcd for C$_{18}$H$_{19}$N$_2$O$_3$: 343.11109 (M+H)$^+$, found 343.11118.
(E)-5,9-Dimethyl-1-styryl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4p; Table 2):

Yield, 91%; Solid; mp 132-136 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.2 Hz, 1H), 7.73 – 7.18 (m, 6H), 7.15 (s, 1H), 6.58 – 6.49 (d, J = 16.2 Hz, 1H), 6.40 – 6.29 (dd, J = 5.2 Hz, 1H), 5.63 (d, J = 4.9 Hz, 1H), 4.13 – 4.03 (m, 1H), 3.98 – 3.90 (m, 1H), 3.27 (s, 3H), 2.84 – 2.71 (m, 1H), 2.54 – 2.44 (m, 1H), 2.39 (s, 1H); ¹³C NMR (400 MHz, CDCl₃): δ 142.3, 136.3, 136.1, 136.0, 131.4, 128.9, 128.4, 128.2, 128.0, 126.8, 126.7, 123.8, 121.8, 115.2, 71.5, 58.6, 30.3, 26.7, 21.9; IR (neat) νₘₐₓ 3749, 3449, 3026, 2977, 2917, 2865, 1603, 1482, 1452, 1368, 1319, 1247, 1176, 1124, 1086, 1065, 964, 883, 807, 753, 691, 589, 547, 461 cm⁻¹; MS (ESI): m/z 368 (M+H)⁺. HRMS (ESI) calcd for C₂₁H₂₂O₃NS: 368.13149 (M+H)⁺, found 368.13197.

1,5,9-Trimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4q; Table 2):

Yield, 75%; Solid; mp 138-139 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 7.9 Hz, 1H), 7.27 (d, J = 7.9 Hz, 1H), 7.13 (s, 1H), 5.14 – 5.08 (m, 1H), 4.15 – 4.05 (m, 1H), 3.85 – 3.79 (m, 1H), 3.20 (s, 3H), 2.68 – 2.60 (m, 1H), 2.56 – 2.50 (m, 1H), 2.45 (s, 3H), 1.44 (d, J = 6.4 Hz, 3H); ¹³C NMR (400 MHz, CDCl₃): δ 142.2, 135.0, 131.8, 129.4, 128.0, 123.5, 122.0, 118.7, 69.1, 60.6, 30.6, 26.8, 21.9, 20.5; IR (neat) νₘₐₓ 3421, 2982, 2939, 2894, 2856, 2830, 1733, 1599, 1558, 1473, 1367, 1327, 1247, 1177, 116, 1112, 1075, 1036, 921, 865, 828, 781, 689, 548, 568, 491,
461, 421 cm\(^{-1}\); MS (ESI): \(m/z\) 280 (M+H\(^{+}\)). HRMS (ESI) calcd for C\(_{14}\)H\(_{18}\)O\(_3\)NS: 280.10019 (M+H\(^{+}\)), found 280.09989.

1-Isobutyl-5,9-dimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4r; Table 2):

![Chemical structure](image)

Yield, 81%; Solid; mp 127-129 ºC; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.76 (d, \(J = 8.0\) Hz, 1H), 7.26 (d, \(J = 7.9\) Hz, 1H), 7.10 (s, 1H), 5.03 (d, \(J = 8.6\) Hz, 1H), 4.11 – 4.05 (m, 1H), 3.84 -3.78 (m, –1H), 3.20 (s, 3H), 2.59 – 2.55 (m, 2H), 2.45 (s, 3H), 2.00 – 1.92 (m, 1H), 1.73 – 1.66 (m, 1H), 1.49 – 1.43 (m, 1H), 1.07 (d, \(J = 6.5\) Hz, 3H), 0.91 (d, \(J = 6.8\) Hz, 3H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 142.1, 135.0, 131.7, 129.3, 127.9, 123.5, 122.0, 118.7, 70.7, 59.8, 42.4, 30.5, 26.7, 24.6, 23.7, 21.9, 21.3; IR (neat) \(\nu_{\text{max}}\) 3448, 2951, 2869, 2838, 1616, 1597, 1462, 1365, 1317, 1247, 1174, 1113, 1073, 1036, 968, 895, 839, 807, 701, 630, 576, 547, 509, 468, 436, 407 cm\(^{-1}\); MS (ESI): \(m/z\) 322 (M+H\(^{+}\)). HRMS (ESI) calcd for C\(_{17}\)H\(_{23}\)O\(_3\)NS: 322.14695 (M+H\(^{+}\)), found 322.14714.

1-Cyclohexyl-5,9-dimethyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4s; Table 2):

![Chemical structure](image)

Yield, 77%; Solid; mp 158-160 ºC; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.75 (d, \(J = 8.0\) Hz, 1H), 7.26 (d, \(J = 7.8\) Hz, 1H), 7.12 (s, 1H), 4.85 (d, \(J = 2.2\) Hz, 1H), 4.14 (dd, \(J = 1.7\) Hz , 1H), 3.66 (td, \(J = 3.0\) Hz, \(J = 7.8\) Hz, 1H), 3.18 (s, 3H), 2.77-2.66 (m, 1H), 2.46 (s, 3H), 2.40-2.33 (m, 1H), 1.80 – 1.68 (m, 3H), 1.64 – 1.39 (m, 5H), 1.26 – 1.01 (m, 2H), 1.00 – 0.88(m, 1H); \(^{13}\)C NMR (400
MHz, CDCl$_3$): δ141.8, 136.3, 132.3, 129.3, 127.8, 123.8, 122.0, 117.0, 62.1, 41.7, 30.8, 30.1, 26.8, 26.3, 26.1, 24.6, 22.0; IR (neat) ν_{max} 3450, 2926, 2856, 1609, 1453, 1332, 1247, 1174, 1125, 1032, 898, 866, 803, 696, 578, 551, 514, 445 cm$^{-1}$; MS (ESI): m/z 348 (M+H)$^+$. HRMS (ESI) calcd for C$_{19}$H$_{25}$O$_3$NS: 348.16299 (M+H)$^+$, found 348.16279.

5-Ethyl-9-methyl-1-(p-tolyl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4t; Table 3):

![Image of 5-Ethyl-9-methyl-1-(p-tolyl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4t)](image)

Yield, 92%; Solid; mp 172-174 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.72 (d, $J = 7.9$ Hz, 1H), 7.24 (d, $J = 8.0$ Hz, 1H), 7.17 (d, $J = 7.5$ Hz, 1H), 7.10 (d, $J = 7.9$ Hz, 2H), 6.92(s, 1H), 5.96(s, 1H), 3.96 – 3.81(m, 3H), 3.77 – 3.3.67(m, 1H), 2.81 – 2.72(m, 1H), 2.62 – 2.55(m, 1H), 2.29(s, 3H), 2.76(s, 3H), 1.12(t, $J = 7.0$ Hz, 3H); 13C NMR (400 MHz, CDCl$_3$): δ 141.9, 138.1, 136.6, 133.4, 131.5, 130.2, 129.0, 128.2, 124.3, 117.8, 74.5, 59.1, 40.5, 26.8, 21.8, 21.1, 15.1; IR (neat) ν_{max} 3449, 2975, 2917, 2865, 1916, 1607, 1559, 1511, 1474, 1454, 1377, 1322, 1225, 1173, 1122, 1100, 991, 930, 904, 819, 769, 680, 658, 617, 577, 545, 510, 484 cm$^{-1}$; MS (ESI): m/z 370 (M+H)$^+$. HRMS (ESI) calcd for C$_{21}$H$_{24}$NO$_3$S 370.14714 (M+H)$^+$, found 370.14778.

5-Ethyl-9-methyl-1-(3,4,5-trimethoxyphenyl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4u; Table 3):

![Image of 5-Ethyl-9-methyl-1-(3,4,5-trimethoxyphenyl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4u)](image)
Yield, 88%; Solid; mp 149-151 ºC; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.71 (d, \(J = 7.9\) Hz, 1H), 7.2 (d, \(J = 8.0\) Hz, 1H), 6.97(s, 1H), 6.60 (s, 1H), 5.94(s, 1H), 4.02 – 3.86(m, 3H), 3.79 (s, 3H), 3.79 (s, 3H), 3.77 (s, 6H), 3.74 – 3.65 (s, 1H), 2.77 – 2.61 (m, 2H), 2.31 (s, 3H), 1.10 (t, \(J = 7.0\) Hz 3H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 153.1, 142.0, 137.6, 135.6, 135.2, 131.71, 130.3, 128.3, 124.1, 121.1, 118.1, 106.0, 75.0, 60.6, 60.0, 56.0, 40.5, 26.7, 21.8, 15.0; IR (neat) \(\nu_{\text{max}}\) 3447, 2981, 2939, 2885, 2835, 1614, 1592, 1504, 1462, 1423, 1314, 1228, 1203, 1173, 1122, 1057, 1011, 922, 885, 824, 779, 726, 691, 590, 548, 495 cm\(^{-1}\); MS (ESI): \(m/z\) 446 (M+H). HRMS (ESI) calcd for C\(_{23}\)H\(_{28}\)NO\(_3\)S: 446.16318 (M+H)\(^+\), found 446.16423.

5-Ethyl-9-methyl-1-(p-tolyl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4v; Table 3):

![Chemical Structure](image)

Yield, 94%; Solid; mp 182-184 ºC; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.77 (d, \(J = 8.3\) Hz, 1H), 7.36 – 7.27(m, 6H), 7.09 (d, \(J = 1.83\) Hz, 1H), 5.92(s,1H), 3.98 – 3.84(m, 3H), 3.81 – 3.71(m, 1H), 2.82 – 2.72(m, 1H), 2.69 – 2.61(m, 1H), 1.15(t, \(J = 7.0\) Hz, 3H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 139.0, 137.9, 137.1, 133.1, 130.7, 129.0, 128.7, 128.6, 127.4, 123.9, 122.9, 116.8, 74.9, 59.5, 40.6, 26.5, 15.3; IR (neat) \(\nu_{\text{max}}\) 3059, 2976, 2930, 2869, 1901, 1611, 1583, 1546, 1493, 1459, 1397, 1371, 1351, 1328, 1279, 1228, 1209, 1174, 1125, 1093, 1063, 1037, 935, 874, 757, 701, 648, 598, 574, 517, 424 cm\(^{-1}\); MS (ESI): \(m/z\) 376 (M+H)\(^+\). HRMS (ESI) calcd for C\(_{19}\)H\(_{18}\)ClNO\(_3\)S 376.07759 (M+H)\(^+\), found 376.07687.

5-Benzyl-1-(4-chlorophenyl)-9-methyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4w; Table 3):

Yield, 94%; Solid; mp 182-184 ºC; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.77 (d, \(J = 8.3\) Hz, 1H), 7.36 – 7.27(m, 6H), 7.09 (d, \(J = 1.83\) Hz, 1H), 5.92(s,1H), 3.98 – 3.84(m, 3H), 3.81 – 3.71(m, 1H), 2.82 – 2.72(m, 1H), 2.69 – 2.61(m, 1H), 1.15(t, \(J = 7.0\) Hz, 3H); \(^{13}\)C NMR (400 MHz, CDCl\(_3\)): \(\delta\) 139.0, 137.9, 137.1, 133.1, 130.7, 129.0, 128.7, 128.6, 127.4, 123.9, 122.9, 116.8, 74.9, 59.5, 40.6, 26.5, 15.3; IR (neat) \(\nu_{\text{max}}\) 3059, 2976, 2930, 2869, 1901, 1611, 1583, 1546, 1493, 1459, 1397, 1371, 1351, 1328, 1279, 1228, 1209, 1174, 1125, 1093, 1063, 1037, 935, 874, 757, 701, 648, 598, 574, 517, 424 cm\(^{-1}\); MS (ESI): \(m/z\) 376 (M+H)\(^+\). HRMS (ESI) calcd for C\(_{19}\)H\(_{18}\)ClNO\(_3\)S 376.07759 (M+H)\(^+\), found 376.07687.
Yield, 93%; Solid; mp 156-158 ºC; 1H NMR (400 MHz, CDCl$_3$): δ 7.79 (d, J = 7.9 Hz, 1H), 7.29 – 7.20 (m, 8H), 7.107 – 7.07 (m, 2H), 6.81 (s, 1H), 5.86 (s, 1H), 5.08 (d, J = 16.7 Hz, 1H), 4.92 (d, J = 16.7 Hz, 1H), 3.76 – 3.67 (m, 2H), 2.62 – 2.50 (m, 2H), 2.27 (s, 3H); 13C NMR (400 MHz, CDCl$_3$): δ 142.2, 138.2, 136.2, 134.2, 131.3, 130.4, 130.0, 128.7, 128.7, 128.4, 127.6, 126.7, 124.2, 128.6, 117.0, 74.1, 59.4, 48.5, 27.0, 21.9; IR (neat) ν_{max} 3058, 2960, 2890, 1618, 1597, 1486, 1449, 1412, 1359, 1327, 1221, 1176, 1142, 1086, 1059, 993, 904, 862, 828, 734, 690, 657, 595, 550, 471, 446 cm$^{-1}$; MS (ESI): m/z 452 (M+H)$^+$. HRMS (ESI) calcd for C$_{25}$H$_{22}$ClNO$_3$S: 452.10976 (M+H)$^+$, found 452.10817.

5-Benzyl-9-methyl-1-pentyl-1,3,4,5-tetrahydrobenzo[epyrano[4,3-c][1,2]thiazine-6,6-dioxide (4x; Table 3):

Yield, 78%; Solid; mp 122-124 ºC; 1H NMR (400 MHz, CDCl$_3$): δ 7.79 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 8.08 Hz, 1H), 7.22 – 7.17 (m, 3H), 7.09 (s, 1H), 7.04 – 7.01 (m, 2H), 5.02 (d, J = 16.8 Hz, 1H), 4.95 – 4.91 (m, 1H), 4.78 (d, J = 16.8 Hz, 1H), 4.01 – 3.95 (m, 1H), 3.62 – 3.55 (m, 1H), 2.60 – 2.51 (m, 1H), 2.46 (s, 1H), 2.36 – 2.28 (m, 1H), 1.77 – 1.64 (m, 2H), 1.46 – 1.37 (m, 2H), 1.30 – 1.19 (m, 4H), 0.84 (t, J = 6.96 Hz, 3H); 13C NMR (400 MHz, CDCl$_3$): δ 142.0, 136.4, 134.6, 131.9, 130.4, 128.6, 128.1, 127.4, 126.5, 123.7, 121.9, 119.4, 72.8, 60.7, 48.4, 33.9, 31.5, 27.0, 24.4, 22.5, 22.0, 13.9; IR (neat) ν_{max} 3418, 3026, 2931, 2860, 1609, 1557, 1456, 1410, 1358, 1316, 1175, 1140, 1114, 1075, 1029, 913, 878, 795, 746, 693, 641, 593, 555, 512, 474 cm$^{-1}$; MS (ESI): m/z 412 (M+H)$^+$. HRMS (ESI) calcd for C$_{24}$H$_{30}$O$_3$NS: 412.19377 (M+H)$^+$, found 412.19409.
5-Methyl-1,9-diphenyl-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4y Table 3):

![Chemical Structure Image]

Yield, 90%; Solid; mp 194-196 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.91\) (d, \(J = 8.1\) Hz, 1H), 7.55 (d, \(J = 8.1\) Hz, 1H), 7.43 – 7.36 (m, 12H), 6.02 (s, 1H), 4.00 – 3.86 (m, 2H), 3.35 (s, 3H), 2.80 – 2.66 (m, 2H); \(^1^3\)C NMR (400 MHz, CDCl\(_3\)): \(\delta 144.6, 139.6, 139.5, 137.1, 131.9, 129.9, 129.8, 128.6, 128.5, 128.2, 127.2, 126.0, 122.8, 122.2, 115.6, 75.1, 59.7, 30.6, 26.9; IR (neat) \(\nu_{\text{max}}\) 3447, 3030, 2970, 2925, 2881, 1612, 1594, 1550, 1474, 1453, 1400, 1375, 1314, 1289, 1258, 1232, 1170, 1123, 1097, 1027 399, 906, 872, 847, 825, 787, 767, 747, 710, 678, 625, 587, 547, 523, 480, 417 cm\(^{-1}\); MS (ESI): \(m/z\) 404 (M+H). HRMS (ESI) calcd for C\(_{24}\)H\(_{22}\)NO\(_3\)S: 404.13327 (M+H), found 404.13149.

5-Methyl-9-phenyl-1-(\(m\)-tolyl)-1,3,4,5-tetrahydrobenzo[e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4z; Table 3):

![Chemical Structure Image]

Yield, 91%; Solid; mp 174-176 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.91\) (d, \(J = 8.2\) Hz, 1H), 7.55 (dd, \(J = 8.19\) Hz, 1H), 7.42 – 7.34 (m, 3H), 7.32 – 7.25 (m, 5H), 7.12 (d, \(J = 7.94\) Hz, 2H), 6.99 (s, 1H), 3.99 – 3.84 (m, 2H), 3.34 (s, 3H), 2.82 – 2.73 (m, 1H), 2.71 – 2.62 (m, 1H), 2.29 (s, 3H); \(^1^3\)C NMR (400 MHz, CDCl\(_3\)): \(\delta 144.5, 139.6, 138.2, 136.9, 136.6, 132.0, 130.0, 129.3, 129.0, 128.8, 128.1, 127.2, 125.9, 122.8, 122.2, 115.8, 74.8, 59.4, 30.6, 26.8, 21.1; IR (neat) \(\nu_{\text{max}}\)
3419, 3030, 2967, 2922, 2873, 1716, 1616, 1595, 1507, 1471, 1400, 1317, 126, 1230, 1173, 1124, 1093, 1063, 1024, 993, 871, 830, 766, 705, 674, 578, 547, 519, 483, 421 cm⁻¹; MS (ESI): \(m/z \) 418 (M+H)⁺. HRMS (ESI) calcd for C₂₅H₂₄NO₅S: 418.14614 (M+H)⁺, found 418.14714.

1-(4-Chlorophenyl)-5-methyl-1,3,4,5-tetrahydro-naphtho[2,3-e]pyrano[4,3-c][1,2]thiazine-6,6-dioxide (4aa; Table 3):

![Chemical structure](image)

Yield, 85%; Solid; mp 250-252 ºC; \(^1\)H NMR (400 MHz, CDCl₃): \(\delta \) 8.10 (d, \(J = 8.4 \) Hz, 1H), 7.98 (d, \(J = 7.9 \) Hz, 1H), 7.86 (d, \(J = 8.5 \) Hz, 1H), 7.77(d, \(J = 8.2 \) Hz, 1H), 7.65 – 7.55 (m, 2H), 7.30 (d, \(J = 8.4 \) Hz, 2H), 7.20 (d, \(J = 8.4 \) Hz, 2H), 6.29 (s, 1H), 4.68 – 4.54 (m, 2H), 3.62 – 3.52 (m, 1H), 3.42 – 3.32 (m, 1H), 2.93 (s, 3H); \(^1^3\)C NMR (400 MHz, CDCl₃): \(\delta \) 138.1, 136.1, 135.6, 134.2, 133.8, 132.9, 132.5, 129.8, 129.5, 128.7, 128.3, 128.1, 127.2, 126.9, 124.5, 116.0, 100.2, 69.3, 31.3, 24.3; IR (neat) \(\nu_{\text{max}} \) 3448, 3065, 2900, 1589, 1491, 1440, 1406, 194, 1248, 1203, 1170, 1135, 1089, 1027, 991, 954, 888, 860, 838, 810, 786, 748, 681, 637, 618, 552, 514, 457, 407 cm⁻¹; MS (ESI): \(m/z \) 412 (M+H)⁺. HRMS (ESI) calcd for C₂₂H₁₉O₃NCISO: 412.07854 (M+H)⁺, found 412.07687.
3. 1H & 13C NMR spectra of products

1H NMR of Compound 4a

13C NMR of Compound 4a
H NMR of Compound 4c

N

S

O

O

C

Cl

N

S

O

O

C

Cl

1H NMR of Compound 4c

13C NMR of Compound 4c
1H NMR of Compound 4d

13C NMR of Compound 4d
1H NMR of Compound 4e

13C NMR of Compound 4e
1H NMR of Compound 4f

13C NMR of Compound 4f
\[\text{\(^1\)H NMR of Compound 4g} \]

\[\text{\(^{13}\)C NMR of Compound 4g} \]
H NMR of Compound 4h

13C NMR of Compound 4h
1H NMR of Compound 4i

13C NMR of Compound 4i
1H NMR of Compound 4j

13C NMR of Compound 4j
H NMR of Compound 4l

13C NMR of Compound 4l
\textbf{1H NMR of Compound 4m}

\textbf{13C NMR of Compound 4m}
1H NMR of Compound 4n

13C NMR of Compound 4n
1H NMR of Compound 4p

13C NMR of Compound 4p
1H NMR of Compound 4q

13C NMR of Compound 4q
1H NMR of Compound 4r

13C NMR of Compound 4r
$^{1}{	ext{H}}$ NMR of Compound 4s

$^{13}{\text{C}}$ NMR of Compound 4s
1H NMR of Compound 4t

13C NMR of Compound 4t
^{1}H NMR of Compound 4u

^{13}C NMR of Compound 4u
^{1}H NMR of Compound 4v

^{13}C NMR of Compound 4v
$\text{H NMR of Compound 4w}$

$\text{^{13}C NMR of Compound 4w}$
\(^1\)H NMR of Compound 4y

\(^{13}\)C NMR of Compound 4y
\[\text{H NMR of Compound 4z} \]

\[\text{\(^{13}\text{C NMR of Compound 4z}\)} \]
1H NMR of Compound 4aa

13C NMR of Compound 4aa
4. X-ray Crystallography of 4d

X-ray data for the compounds were collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoKα radiation (λ=0.71073 Å) with ω-scan method [1]. Preliminary lattice parameters and orientation matrices were obtained from four sets of frames.

Integration and scaling of intensity data was accomplished using SAINT program [1]. The structure was solved by direct methods using SHELXS [2] and refinement was carried out by full-matrix least-squares technique using SHELXL [2]. Anisotropic displacement parameters were included for all non-hydrogen atoms. All other H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å and U_{iso}(H) = 1.5U_{eq}(C) for methyl H or 1.2U_{eq}(c) for other H atoms]. The methyl groups were allowed to rotate but not to tip.

Crystal Data for 4d: C_{17}H_{15}NO_{3} (M = 281.31 g/mol): monoclinic, space group P2_{1}/n (no. 14), a = 6.0088(1) Å, b = 21.3777(5) Å, c = 10.8832(2) Å, β = 93.6225(7)°, V = 1395.20(5) Å³, Z = 4, T = 294.15 K, μ(Mo Kα) = 0.092 mm⁻¹, D_{calc} = 1.3391 g/cm³, 50265 reflections measured (5.34° ≤ 2Θ ≤ 61.42°), 4330 unique (R_{int} = 0.0856, R_{sigma} = 0.0516) which were used in all calculations. The final R₁ was 0.0686 (I>2σ(I)) and wR₂ was 0.1577 (all data). CCDC 1834668 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk].