Supporting Information for

Efficient synthesis of ferrocifens and other ferrocenyl-substituted ethylenes via a ‘sulfur approach’

Grzegorz Mlostoń*a, Róża Hamera-Fałdygaa, Małgorzata Celedaa and Heinz Heimgartnerb

Addresses:
*aDepartment of Organic and Applied Chemistry, University of Lodz, Tamka 12, 91-493 Lodz, Poland. E-Mail: grzegorz.mloston@chemia.uni.lodz.pl; Fax: +48 42 6655162; Tel: +48 42 6355761
bDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. E-Mail: heinz.heimgartner@chem.uzh.ch; Fax: +41 44 6356812; Tel.: +41 44 6354282

*Corresponding author

Products obtained in the study - supplementation

S-1. Alkyl ferrocenyl ketones

S-1.1. Ethyl ferrocenyl ketone. Orange solid; yield: 213 mg (88%); m.p. 66.5–68.7 °C (ref.51 67–68 °C). 1H NMR (600 MHz, CDCl3): δ 1.20 (t, 3H, JH,H= 7.2 Hz, CH3), 2.73 (q, 2H, JH,H = 7.2 Hz, CH2), 4.18 (bs, 5H, 5 Fc-CH), 4.48 (t, 2H, JH,H = 1.8 Hz, 2 Fc-CH), 4.78 (t, 2H, JH,H = 1.8 Hz, 2 Fc-CH) ppm. 13C{1H}NMR (150 MHz, CDCl 3): δ 12.0, 17.2 (2 CH3), 26.9 (CH2), 44.3 (CH), 69.3, 72.0, 72.1 (4 CH-Fc), 69.5 (5 CH-Fc), 78.9 (C-Fc), 208.3 (C=O) ppm.

S-1.2. Ferrocenyl propyl ketone. Red solid; yield: 192 mg (75%); m.p. 36.1–38.3 °C (ref.52 36.0–38.0 °C). 1H NMR (600 MHz, CDCl3): δ 1.02 (t, 3H, JH,H= 7.2 Hz, CH3), 1.72–1.79 (m, 2H, CH2), 2.69 (t, 2H, JH,H = 7.2 Hz, CH2), 4.20 (bs, 5H, 5 Fc-CH), 4.49 (t, 2H, JH,H = 1.8 Hz, 2 Fc-CH), 4.79 (t, 2H, JH,H = 1.8 Hz, 2 Fc-CH) ppm. 13C{1H}NMR (150 MHz, CDCl3): δ 4.10 (CH3), 18.0 (CH2), 41.7 (CH2), 69.3, 72.0 (4 CH-Fc), 69.7 (5 CH-Fc), 79.3 (C-Fc), 204.4 (C=O) ppm.

S-1.3. Ferrocenyl (sec-butyl) ketone. Thick orange oil; yield: 221 mg (82%). 1H NMR (600 MHz, CDCl3): δ 1.00 (t, 3H, JH,H= 7.2 Hz, CH3), 1.20 (d, 3H, JH,H = 7.2 Hz, CH3), 1.42–1.52, 1.77–1.87 (2m, CH2), 2.88–2.94 (m, 1H, CH), 4.21 (bs, 5H, 5 Fc-CH), 4.50 (bs, 2H, 2 Fc-CH), 4.78 (bs, 1H, Fc-CH), 4.80 (bs, 1H, Fc-CH) ppm. 13C{1H }NMR (150 MHz, CDCl3): δ 12.0, 17.2 (2 CH3), 26.9 (CH2), 44.3 (CH), 69.3, 72.0, 72.1 (4 CH-Fc), 69.5 (5 CH-Fc), 78.9 (C-Fc), 208.3 (C=O) ppm. IR (KBr): ν 3098w, 2965m, 2933m, 2873w, 1666vs (C=O), 1451m, 1378m, 1268m, 1239m, 1106m, 1062m, 1030m, 1002m, 888m, 827m cm⁻¹. Anal. calcd. for C15H18FeO (270.15): C 66.69, H 6.73; found: C 66.48, H 6.72.
S-2. Alkyl ferrocenyl thioketones 7b–d

S-2.1. Ethyl ferrocenyl thioketone (7b). Violet solid; yield: 206 mg (80%); m.p. 37.0–39.0 °C. 1H NMR (600 MHz, CDCl3): δ 1.39 (t, 3H, J_H,H= 6.6 Hz, CH₃), 3.09 (q, 2H, CH₂), 4.18 (bs, 5H, 5 Fc-CH), 4.73 (bs, 2H, 2 Fc-CH), 5.05 (bs, 2H, 2 Fc-CH) ppm. 13C{1H} NMR (150 MHz, CDCl₃): δ 14.6 (CH₃), 42.1 (CH₂), 69.9, 74.0 (4 CH-Fc), 71.2 (5 CH-Fc), 89.0 (C-Fc), 247.9 (C=S) ppm. IR (KBr): ν 3110w, 2969w, 1440s, 1373m, 1262s, 1223m, 1154m, 1043m, 967m, 836m, 819s, 776m, 513s, 480m cm⁻¹. Anal. calcd. for C₁₃H₁₄FeS (258.16): C 60.48, H 5.47, S 12.42; found: C 60.58, H 5.50, S 12.49.

S-2.2. Ferrocenyl propyl thioketone (7c). Violet solid; yield: 199 mg (73%); m.p. 30.0–32.0 °C. 1H NMR (600 MHz, CDCl₃): δ 1.04 (t, 3H, J_H,H= 7.2 Hz, CH₃), 1.84–1.92 (m, 2H, CH₂), 3.03–3.09 (m, 2H, CH₂), 4.19 (bs, 5H, 5 Fc-CH), 4.73 (t, 2H, J_H,H = 1.8 Hz, 2 Fc-CH), 5.03 (t, 2H, J_H,H = 1.8 Hz, 2 Fc-CH) ppm. 13C{1H} NMR (150 MHz, CDCl₃): δ 13.9 (CH₃), 24.0 (CH₂), 51.5 (CH₂), 70.0, 74.2 (4 CH-Fc), 71.3 (5 CH-Fc), 89.3 (C-Fc), 246.7 (C=S) ppm. IR (KBr): ν 3091w, 2960s, 2930m, 2871m, 1669s, 1443vs, 1380s, 1285m, 1107m, 1052m, 1002m, 822vs, 500m cm⁻¹. Anal. calcd. for C₁₄H₁₆FeS (272.19): C 61.78, H 5.92, S 11.78; found: C 61.81, H 5.90, S 11.73.

S-2.3. Ferrocenyl (sec-butyl) thioketone (7d). Violet solid; yield: 215 mg (75%); m.p. 35.0–37.0 °C. 1H NMR (600 MHz, CDCl₃): δ 0.96 (t, 3H, J_H,H= 7.2 Hz, CH₃), 1.34 (d, 3H, J_H,H = 6.6 Hz, CH₃), 1.57–1.67, 1.83–1.95 (2m, 2H, CH₂), 3.34–3.45 (m, 1H, CH), 4.19 (bs, 5H, 5 Fc-CH), 4.68–4.78 (m, 2H, 2 Fc-CH), 5.01 (bs, 1H, Fc-CH), 5.08 (bs, 1H, Fc-CH) ppm. 13C{1H} NMR (150 MHz, CDCl₃): δ 12.2 (CH₃), 22.1 (CH₃), 31.5 (CH₂), 51.6 (CH), 69.7, 70.0, 73.9, 74.2 (4 CH-Fc), 71.0 (5 CH-Fc), 90.0 (C-Fc), 253.7 (C=S) ppm. IR (KBr): ν 3104m, 2961s, 2923m, 2871s, 1669s, 1443vs, 1380s, 1285m, 1107m, 1052m, 1002m, 822vs, 500m cm⁻¹. Anal. calcd. for C₁₅H₁₈FeS (286.21): C 62.95, H 6.34, S 11.20; found: C 62.89, H 6.34, S 11.19.

S-3. Ferrocenyl substituted thiiranes 8d,f

S-3.1. 3-Ferrocenyl-3-methyl-2,2-diphenylthiirane (8d). Yellow solid; yield: 271 mg (66%); m.p. 156.1–158.3 °C. 1H NMR (600 MHz, CDCl₃): δ 1.87 (s, CH₃), 3.57 (bs, 1H, Fc-CH), 3.87 (bs, 1H, Fc-CH), 4.14 (bs, 1H, Fc-CH), 4.19 (bs, 5H, 5 Fc-CH), 4.42 (bs, 1H, Fc-CH), 7.02–7.06 (m, 3H, 3 CH arom.), 7.13–7.20 (m, 3H, 3 CH arom.), 7.24–7.28 (m, 2H, 2 CH arom.), 7.48–7.51 (m, 2H, 2 CH arom.) ppm. 13C{1H} NMR (150 MHz, CDCl₃): δ 12.2 (CH₃), 22.1 (CH₃), 31.5 (CH₂), 51.6 (CH), 69.7, 70.0, 73.9, 74.2 (4 CH-Fc), 71.0 (5 CH-Fc), 90.0 (C-Fc), 253.7 (C=S) ppm. IR (KBr): ν 3104m, 2961s, 2923m, 1451m, 1439vs, 1378m, 1283m, 1252m, 1223m, 1163m, 1036m, 827m, 685m, 511m cm⁻¹. Anal. calcd. for C₁₅H₁₈FeS (286.21): C 62.95, H 6.34, S 11.20; found: C 62.89, H 6.34, S 11.19.
S-3.2. 3'-Ferrocenyl-3'-methyl-10,11-dihydro-5H-spiro[dibenzo[a,d][7]annulene-5,2'-thirane] (8f). Yellow solid; yield: 306 mg (66%); m.p. 154.0–156.0 °C. 1H NMR (600 MHz, CDCl3): δ 1.84 (bs, 3H, CH3), 2.45–2.55, 2.88–2.98, 3.09–3.19, 3.35–3.43 (4m, 4H, 2 CH2), 3.60 (bs, 1H, Fe-C), 3.82 (bs, 1H, Fe-C), 4.00 (bs, 1H, Fe-C), 4.19 (bs, 5H, 5 Fe-C), 4.39 (bs, 1H, Fe-C), 6.83–6.87 (m, 1H, CHarom.), 7.03–7.20 (m, 5H, 5 CHarom.), 7.59–7.62 (m, 1H, CHarom.), 7.67–7.71 (m, 1H, CHarom.) ppm. 13C{1H} NMR (150 MHz, CDCl3): δ 25.3 (CH3), 30.9 (CH2), 32.5 (CH2), 57.3 (Cα), 67.3, 67.6, 69.2, 69.4 (4 CH-Fc), 69.1 (5 CH-Fc), 71.6 (Cα), 89.9 (C-Fc), 125.6, 125.7, 127.4, 127.5, 130.2, 130.3, 130.5 (8 CHarom.), 137.4, 138.3, 138.5, 141.0 (6 C Fe) ppm. IR (KBr): ν 999, 941, 812, 755, 704, 682, 648, 513, 492 cm−1. Anal. calcd. for C25H22FeS (436.39): C 74.31, H 5.54, S 7.35; found: C 74.42, H 5.67, S 7.36.

S-4. Ferrocenyl substituted ethylenes 9d,f−g,j−k,m

S-4.1. 2-Ferrocenyl-1,1-diphenylprop-1-ene (9d). Orange solid; yield: 367 mg (97%); m.p. 157.5–159.8 °C; desulfurization of thirane. 1H NMR (600 MHz, CDCl3): δ 2.20 (s, CH3), 3.93 (t, 2H, JH,H= 1.8 Hz, 2 Fc-C), 4.11 (t, 2H, JH,H = 1.8 Hz, 2 Fc-C), 4.17 (bs, 5H, 5 Fc-C), 7.05–7.09 (m, 2H, 2 CHarom.), 7.16–7.28 (m, 6H, 6 CHarom.), 7.33–7.37 (m, 2H, 2 CHarom.) ppm. 13C{1H} NMR (150 MHz, CDCl3): δ 21.8 (CH3), 68.0, 69.2 (4 CH-Fc), 69.0 (5 CH-Fc), 87.4 (C-Fc), 126.1, 126.2, 127.9, 128.0, 129.8, 130.3 (10 CHarom.), 130.9, 136.3, 144.4 (C=C, 2 CHarom.) ppm. IR KBr: ν 3072w, 3012w, 2917w, 2857w, 1609m, 1594m, 1489m, 1435m, 1271m, 1103m, 1002m, 913m, 812m, 764m, 694vs, 656m, 514m cm−1. Anal. calcd. for C27H24FeS (436.39): C 79.38, H 5.86; found: C 79.42, H 5.67, S 7.35.

S-4.2. 2-Ferrocenyl-1,1-diphenylpent-1-ene (9f). Yellow solid; yield: 306 mg (66%); m.p. 154.0–156.0 °C; spontaneous desulfurization of thirane. 1H NMR (600 MHz, CDCl3): δ 0.83 (t, 3H, JH,H= 7.2 Hz, CH3), 1.46–1.56 (m, 2H, CH2), 2.55–2.59 (m, 2H, CH2), 3.89 (t, 2H, JH,H = 1.8 Hz, 2 Fc-C), 4.08 (t, 2H, JH,H = 1.8 Hz, 2 Fc-C), 4.13 (bs, 5H, 5 Fc-C), 7.07–7.11 (m, 2H, 2 CHarom.), 7.15–7.19 (m, 1H, CHarom.), 7.21–7.24 (m, 5H, 5 CHarom.), 7.31–7.35 (m, 2H, 2 CHarom.) ppm. 13C{1H} NMR (150 MHz, CDCl3): δ 14.4 (CH3), 24.0 (CH2), 37.0 (CH2), 68.1, 69.4 (4 CH-Fc), 69.2 (5 CH-Fc), 87.0 (C-Fc), 126.1, 126.2, 128.1, 128.2, 129.4, 129.9 (10 CHarom.), 135.9, 138.5, 144.7, 144.8 (C=C, 2 CHarom.) ppm. IR KBr: ν 3091m, 3015w, 2925s, 2876m, 2866m, 1609m, 1591m, 1489m, 1464m, 1435m, 1454m, 1103m, 1052m, 1040m, 1002m, 1017m, 919m, 812m, 755m, 704vs, 694s, 520m, 495m cm−1. Anal. calcd. for C27H26Fe (406.34): C 79.81, H 6.45; found: C 79.82, H 6.51.

S-4.3. 2-Ferrocenyl-3-methyl-1,1-diphenylpent-1-ene (9g). Orange solid; yield: 326 mg (74%); m.p. 137.0–139.7 °C; spontaneous desulfurization. 1H NMR (600 MHz, CDCl3): δ 0.90 (t, 3H, JH,H= 7.2 Hz, CH3), 1.33 (d, 2H, JH,H = 7.2 Hz, CH2), 1.40–1.47, 1.72–1.79 (2m, 2H, CH2), 2.77–2.84 (m, 1H, CH), 3.79 (bs, 1H, Fe-C), 3.91 (bs, 1H, Fe-C), 4.06 (bs, 2H, 2 Fe-C), 4.12 (bs, 5H, 5 Fe-C), 7.04–7.07 (m, 2H, 2 CHarom.), 7.10–7.15 (m, 1H, CHarom.), 7.17–7.22 (m, 5H, 5 CHarom.), 7.28–7.31 (m, 2H, 2 CHarom.) ppm. 13C{1H} NMR (150 MHz, CDCl3): δ 13.2 (CH3), 21.2 (CH3), 29.6 (CH2), 41.7 (CH), 67.5, 67.6, 70.0, 70.1 (4 CH-Fc),
69.1 (5 CH-Fc), 86.6 (C-Fc), 125.9, 126.1, 127.9, 128.0, 129.2, 129.5 (10 CHarom.), 139.5, 140.1, 145.0, 145.5 (C=C, 2 C arom.) ppm. Anal. calcd. for C_{28}H_{28}Fe (420.37): C 80.0, H 6.71; found: C 80.04, H 6.67.

S-4.4. 9-(1-Ferrocenylbutylidene)-9H-fluorene (9j). Orange solid; yield: 384 mg (95%); m.p. >207 °C (decomposition); spontaneous desulfurization. \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 1.16 (t, 3H, \(J\) \(H,H= 7.2\) Hz, CH\(_3\)), 1.83–1.92 (m, 2H, CH\(_2\)), 3.33–3.40 (m, 2H, CH\(_2\)), 4.24 (bs, 5H, 5 Fc-CH), 4.45 (t, 2H, \(J\) \(H,H= 1.8\) Hz, 2 Fc-CH), 4.51 (t, 2H, \(J\) \(H,H= 1.8\) Hz, 2 Fc-CH), 6.94–7.00 (m, 1H, CHarom.), 7.17–7.21 (m, 2H, 2 CHarom.), 7.34–7.38 (m, 2H, 2 CHarom.), 7.66–7.71 (m, 1H, CHarom.), 7.77–7.80 (m, 1H, CHarom.), 7.84–7.88 (m, 1H, CHarom.) ppm. \(^{13}\)C\{\(^1\)H\} NMR (150 MHz, CDCl\(_3\)): \(\delta\) 14.7 (CH\(_3\)), 23.8 (CH\(_2\)), 41.3 (CH\(_2\)), 68.7, 71.0 (4 CH-Fc), 69.5 (5 CH-Fc), 91.8 (C-Fc), 118.8, 119.4, 124.6, 125.5, 125.7, 126.3, 126.6, 126.8 (8 CH arom.), 134.0, 138.8, 139.0, 139.4, 146.0 (C=C, 4 C arom.) ppm. IR (KBr): \(\nu\) 3104 \(w\), 3050 \(w\), 2949 \(m\), 2923 \(m\), 2863 \(m\), 1609 \(m\), 1591 \(m\), 1461 \(m\), 1445 \(s\), 1429 \(m\), 1106 \(m\), 1021 \(m\), 995 \(m\), 815 \(m\), 786 \(m\), 729 \(vs\), 476 \(s\) cm\(^{-1}\). Anal. calcd. for C\(_{27}\)H\(_{24}\)Fe (404.32): C 80.21, H 5.98; found: C 80.34, H 6.03.

S-4.5. 9-(1-Ferrocenyl-2-methylbutylidene)-9H-fluorene (9k). Orange solid; yield: 343 mg (82%); m.p. 177.0–179.0 °C; spontaneous desulfurization. \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 1.10 (t, 3H, \(J\) \(H,H= 7.2\) Hz, CH\(_3\)), 1.75 (d, 2H, \(J\) \(H,H= 7.2\) Hz, CH\(_2\)), 2.12–2.22, 2.40–2.49 (2m, 2H, CH\(_2\)), 3.82–3.91 (m, 1H, CH), 4.18 (bs, 1H, Fc-CH), 4.24 (bs, 1H, Fc-CH), 4.29 (bs, 5H, 5 Fc-CH), 4.51 (bs, 1H, Fc-CH), 4.55 (bs, 1H, Fc-CH), 5.86–5.93 (m, 1H, CHarom.), 6.85–6.90 (m, 1H, CH arom.), 7.12–7.16 (m, 1H, CH arom.), 7.31–7.37 (m, 2H, 2 CH arom.), 7.61–7.65 (m, 1H, CHarom.), 7.71–7.75 (m, 1H, CHarom.), 7.92–7.98 (m, 1H, CHarom.) ppm. \(^{13}\)C\{\(^1\)H\} NMR (150 MHz, CDCl\(_3\)): \(\delta\) 13.1 (CH\(_3\)), 17.2 (CH\(_3\)), 26.0 (CH\(_2\)), 40.9 (CH), 68.1, 68.2, 72.1, 72.8 (4 CH-Fc), 69.7 (5 CH-Fc), 89.5 (C-Fc), 118.5, 119.3, 125.6, 126.0, 126.3, 126.5, 126.7, 126.8 (8 CH arom.), 137.8, 138.1, 139.0, 139.4, 140.4, 148.6 (C=C, 4 C arom.) ppm. IR (KBr): \(\nu\) 3104 \(w\), 3085 \(w\), 2955 \(w\), 1572 \(m\), 1442 \(s\), 1105 \(m\), 1021 \(m\), 995 \(m\), 834 \(s\), 780 \(m\), 729 \(vs\), 489 \(m\) cm\(^{-1}\). Anal. calcd. for C\(_{28}\)H\(_{26}\)Fe (418.35): C 80.39, H 6.26; found: C 80.36, H 6.33.

S-4.6. 5-(1-Ferrocenylpropylidene)-10,11-dihydro-5H-dibenzo[a,d][7]annulene (9m). Orange solid; yield: 410 mg (98%); m.p. 177.0–179.0 °C; spontaneous desulfurization. \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 1.33 (bs, 3H, CH\(_3\)), 1.45–1.52, 2.28–2.36 (2m, 2H, CH\(_2\)), 2.38–2.48, 2.82–2.93, 2.97–3.09 (4m, 4H, 2 CH\(_2\)), 3.45 (bs, 1H, Fc-CH), 3.79 (bs, 1H, Fc-CH), 4.07 (bs, 1H, Fc-CH), 4.18 (bs, 5H, 5 Fc-CH), 4.46 (bs, 1H, Fc-CH), 6.83–6.90 (m, 1H, CHarom.), 6.95–7.00 (m, 1H, CHarom.), 7.04–7.15 (m, 4H, 4 CHarom.), 7.54–7.65 (m, 2H, 2 CHarom.) ppm. \(^{13}\)C\{\(^1\)H\} NMR (150 MHz, CDCl\(_3\)): \(\delta\) 16.6 (CH\(_3\)), 27.1 (CH\(_2\)), 31.8, 32.7 (2 CH\(_2\)), 68.0, 68.1, 69.1, 69.5 (4 CH-Fc), 69.0 (5 CH-Fc), 85.8 (C-Fc), 126.7, 126.8, 128.7, 129.4, 129.9 (8 CHarom.), 135.7, 136.5, 136.6, 137.4, 142.4, 143.8 (C=C, 4 C arom.) ppm. IR (KBr): \(\nu\) 2990 \(w\), 2961 \(w\), 2936 \(w\), 2895 \(w\), 1480 \(m\), 1458 \(m\), 1293 \(m\), 1287 \(m\), 1201 \(m\), 1103 \(m\), 1030 \(m\), 986 \(m\), 935 \(m\), 817 \(s\), 772 \(s\), 749 \(vs\), 647 \(m\), 512 \(m\), 493 \(s\), 481 \(s\) cm\(^{-1}\). Anal. calcd. for C\(_{28}\)H\(_{26}\)Fe (418.35): C 80.39, H 6.26; found: C 80.27, H 6.40.
References

Collection of the 1H and 13C NMR spectra

1. The 1H- and 13C-NMR for ferrocifens 1a–c.

![Figure S1. The 1H NMR spectrum of 1a.](image-url)
Figure S2. The 13C NMR spectrum of 1a.

Figure S3. The 1H NMR spectrum of 1b.
Figure S4. The 13C NMR spectrum of $1b$.

Figure S5. The 1H NMR spectrum of $1c$.
Figure S6. The 13C NMR spectrum of 1c

2. The 1H- and 13C-NMR for the ferrocenyl ketones (not numbered in the manuscript).
Figure S9. The 1H NMR spectrum of ferrocenyl methyl ketone.

Figure S10. The 13C NMR spectrum of ferrocenyl methyl ketone.
Figure S11. The 1H NMR spectrum of ferrocenyl ethyl ketone.

Figure S12. The 13C NMR spectrum of ferrocenyl ethyl ketone.
Figure S13. The 1H NMR spectrum of ferrocenyl n-propyl ketone.

Figure S14. The 13C NMR spectrum of ferrocenyl n-propyl ketone.
Figure S15. The 1H NMR spectrum of ferrocenyl sec-butyl ketone.

Figure S16. The 13C NMR spectrum of ferrocenyl sec-butyl ketone.

3. The 1H- and 13C-NMR for the described ferrocenyl thioketones 7a–d.
Figure S17. The 1H NMR spectrum of ferrocenyl methyl thioketone (7a).

Figure S18. The 13C NMR spectrum of ferrocenyl methyl thioketone (7a).
Figure S19. The 1H NMR spectrum of ferrocenyl ethyl thioketone (7b).

Figure S20. The 13C NMR spectrum of ferrocenyl ethyl thioketone (7b).
Figure S21. The 1H NMR spectrum of ferrocenyl n-propyl thioketone (7c).

Figure S22. The 13C NMR spectrum of ferrocenyl n-propyl thioketone (7c).
Figure S23. The 1H NMR spectrum of ferrocenyl sec-butyl thioketone (7d).

Figure S24. The 13C NMR spectrum of ferrocenyl sec-butyl thioketone (7d)

4. The 1H- and 13C-NMR spectra for thiirane derivatives8a–g.
Figure S25. The 1H NMR spectrum of 8a.

Figure S26. The 13C NMR spectrum of 8a.

Figure S27. The 1H NMR spectrum of 8b.
Figure S28. The 13C NMR spectrum of 8b.

Figure S29. The 1H NMR spectrum of 8c.
Figure S30. The 13C NMR spectrum of 8c.

Figure S33. The 1H NMR spectrum of 8d.
Figure S34. The 13C NMR spectrum of 8d.

Figure S35. The 1H NMR spectrum of 8e.
Figure S36. The 13C NMR spectrum of 8e.

Figure S37. The 1H NMR spectrum of 8f.
Figure S38. The 13C NMR spectrum of 8f.

Figure S35. The 1H NMR spectrum of 8g.
Figure S36. The 13C NMR spectrum of compound 8g.

5. The 1H- and 13C-NMR spectra of ethylene derivatives 9a-m.
Figure S37. The 1H NMR spectrum of 9a.

Figure S38. The 13C NMR spectrum of 9a.
Figure S39. The 1H NMR spectrum of $9b$.

Figure S40. The 13C NMR spectrum of $9b$.
Figure S41. The 1H NMR spectrum of 9c.

Figure S42. The 13C NMR spectrum of 9c.
Figure S43. The 1H NMR spectrum of 9d.

Figure S44. The 13C NMR spectrum of 9d.

Figure S45. The 1H NMR spectrum of 9e.
Figure S46. The 13C NMR spectrum of 9e.

Figure S47. The 1H NMR spectrum of 9f.
Figure S48. The 13C NMR spectrum of 9f.

Figure S49. The 1H NMR spectrum of 9g.
Figure S50. The 13C NMR spectrum of $9g$.

Figure S51. The 1H NMR spectrum of $9h$.
Figure S52. The 13C NMR spectrum of 9h.

Figure S53. The 1H NMR spectrum of 9i.
Figure S54. The 13C NMR spectrum of 9i.

Figure S55. The 1H NMR spectrum of 9j.
Figure S56. The 13C NMR spectrum of 9j.

Figure S57. The 1H NMR spectrum of 9k.
Figure S58. The 13C NMR spectrum of 9k.

Figure S59. The 1H NMR spectrum of 9l.
Figure S60. The 13C NMR spectrum of 9I.

Figure S61. The 1H NMR spectrum of 9m.
Figure S64. The 13C NMR spectrum of 9m.