Electronic Supplementary Information1

Dihydroindeno[1,2-*b*]pyrroles: New Al³⁺ selective off-on chemosensors for bio-imaging in living HepG2 cell

Kajal Mal,^a Barnali Naskar,^a Animesh Mondal,^a Sanchita Goswami,^a Chandraday Prodhan,^b

Keya Chaudhuri^b and Chhanda Mukhopadhyay *^a

*E-mail: cmukhop@yahoo.co.in

Contents of the Supporting Information	Pages
1. Characterization, Structure and Crystallographic Data	0
Figure S1. ESI-MS spectra of compound 4a, 4e, 4g, 4h, 6g, 6j and in Aluminium complexes	4-10
2. Photophysical Characterization	
Figure S2. Absorption spectra of 4a upon titration with Al ³⁺ .	11
Figure S3. Absorption spectra of 4e upon titration with Al ³⁺ .	11
Figure S4. Absorption spectra of 4g upon titration with Al ³⁺ .	12
Figure S5. Absorption spectra of 4h upon titration with Al ³⁺ .	12
Figure S6. Absorption spectra of 6g upon titration with Al ³⁺ .	13
Figure S7. Absorption spectra of 6j upon titration with Al ³⁺ .	13
Figure S8. Emission spectra of 4a upon increasing amounts of [A1 ³⁺]	14
Figure S9. Emission spectra of 4e upon increasing amounts of [Al ³⁺]	14
Figure S10. Emission spectra of 4g upon increasing amounts of [Al ³⁺]	15
Figure S11. Emission spectra of 4h upon increasing amounts of [Al ³⁺]	15
Figure S12. Emission spectra of 6j upon increasing amounts of [Al ³⁺]	16
Figure S13. Results of competing experiments of chemosensor 4a	17
Figure S14. Results of competing experiments of chemosensor 4e	17
Figure S15. Results of competing experiments of chemosensor 4 g	18
Figure S16. Results of competing experiments of chemosensor 4h	18
Figure S17. Results of competing experiments of chemosensor 6j	10
Figure S18. Job's plot for determination of stoichiometry of Al ³⁺ : 4a complex in solution	20
Figure S19 Job's plot for determination of stoichiometry of Al^{3+} : 4e complex in solution	20 20
Figure S20 Job's plot for determination of stoichiometry of Al^{3+} : 4g complex in solution	20
Figure S21 Job's plot for determination of stoichiometry of Al^{3+} : 4 complex in solution	21
Figure S21. Job's plot for determination of stoichiometry of $A^{1^{3+}}$: 4n complex in solution.	21
Figure S22. Job's plot for determination of stoichiometry of A^{13+} . G complex in solution.	22
Figure S25. Job s plot for determination of storemoneury of A1 \therefore of complex in solution	22
Figure S24. Benesi–Hildebrand plot of fluorescence diffation curve of $4a$ and Al	23
Figure S25. Benesi–Hildebrand plot of fluorescence titration curve of 4e and Al	24
Figure S26. Benesi–Hildebrand plot of fluorescence titration curve of 4g and Al ³⁺	24
Figure S27. Benesi–Hildebrand plot of fluorescence titration curve of 4h and A^{13}	25
Figure S28. Benesi–Hildebrand plot of fluorescence titration curve of 6g and Al ⁻¹	25
Figure S29. Benesi–Hildebrand plot of fluorescence titration curve of 6j and Al ⁵¹	26
Figure S30. The limit of detection (LOD) of 4a for AI^{3+} as a function of $[AI^{3+}]$.	27
Figure S31. The limit of detection (LOD) of 4e for Al^{3+} as a function of $[Al^{3+}]$.	27
Figure S32. The limit of detection (LOD) of $4g$ for Al ³⁺ as a function of [Al ³⁺]	28
Figure S33. The limit of detection (LOD) of 4h for Al^{3+} as a function of $[Al^{3+}]$.	28
Figure S34. The limit of detection (LOD) of 6g for Al^{3+} as a function of $[Al^{3+}]$.	29
Figure S35. The limit of detection (LOD) of 6j for Al^{3+} as a function of $[Al^{3+}]$.	29
Figure S36. Fluorescence emission spectra of chemosensor (4a) in the presence of Al^{3+} ion followed by	
addition of EDTA.	30
Figure S37. Fluorescence emission spectra of chemosensor (4e) in the presence of Al ³⁺ ion followed by	
addition of EDTA	30
Figure S38. Fluorescence emission spectra of chemosensor $(4g)$ in the presence of Al ³⁺ ion followed by	
addition of EDTA	31
Figure S39. Fluorescence emission spectra of chemosensor (4h) in the presence of Al ³⁺ ion followed	
by addition of EDTA.	31
Figure S40. Fluorescence emission spectra of chemosensor (6g) in the presence of Al^{3+} ion followed by	

Contents of the Supporting Information	Pages
addition of EDTA	32
Figure S41. Fluorescence emission spectra of chemosensor (6j) in the presence of Al ³⁺ ion followed by	
addition of EDTA.	32
Figure S42. Emission intensity of compounds 4a, 4e, 4g, 4h, 6g and 6j in absence and in presence of	
Al ³⁺ at different pH values in aqueous DMSO solution.	33-35
Figure S43. Anion independency of emission intensity of 4a and 4e in presence of various Al ³⁺ salts	
[e.g. $Al(ClO_4)_3$, $AlCl_3$ and $Al(NO_3)_3$]	36
Figure S44. Anion independency of emission intensity of 4g and 4h in presence of various Al ⁻ salts $\begin{bmatrix} a & Al(C O_{1}) & AlC & and Al(N O_{1}) \end{bmatrix}$	27
Figure S45. Anion independency of emission intensity of 6i in presence of various $A1^{3+}$ salts [e g	37
1.6 and 1.6	38
Al(ClO ₄) ₃ , AlCl ₃ and Al(NO ₃) ₃]	50
Figure S46. Excitation spectra of 4a and 4e in presence of Al ³⁺ in solution	39
Figure S47. Excitation spectra of $4g$ and $4h$ in presence of Al ³⁺ in solution	40
Figure S48. Excitation spectra of $6g$ and $6j$ in presence of Al^{3+} in solution	41
Figure S49. ¹ H NMR titration of chemosensor 6j with Al^{3+} metal ion in DMSO-d ₆	42
Table S4. Summary of photophysical properties of compounds 4a, 4e, 4g, 4h, 6g and 6j studied in	
various solvents	43-45
Table S5. Stability constant (K) and Limit of detection studied with complexation properties of the	
compounds (4a , 4e , 4g , 4h , 6g and 6j)	45
Table S6. Comparison with recently reported probes for selective detection of Al ³⁺ ion	46-49

1. Characterization, Structure and Crystallographic Data

Electrospray ionization mass spectra: (HR–ESI–MS) were recorded on Qtof Micro YA263 mass spectrometer dissolving the samples in LC–MS quality methanol. **Figure S1.** ESI–MS spectra of compound **4a**, **4e**, **4g**, **4h**, **6g**, **6j** and in Aluminium complexes.

ESI-MS of compound 4a

ESI-MS of compound 4e

ESI-MS of compound 4h

ESI-MS of compound 4a+Al

ESI-MS of compound 4e+Al

ESI-MS of compound 4g+Al

ESI-MS of compound 4h+Al

2. Photophysical Characterization

Figure S2. UV-vis spectra of **4a** (5×10^{-6} M) in DMSO/H₂O (2 : 8, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Al³⁺ (0, 1, 2, 3, 4, 5, 6, 8 and 10) ×10⁻⁶ M.

Figure S3. UV-vis spectra of **4e** (5×10^{-6} M) in DMSO/H₂O (2 : 8, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Al³⁺ (0, 1, 2, 3, 4, 5, 6, 8 and 10) ×10⁻⁶ M.

Figure S4. UV-vis spectra of **4g** (5×10^{-6} M) in DMSO/H₂O (2 : 8, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Al³⁺ (0, 1, 2, 3, 4, 5, 6, 8 and 10) ×10⁻⁶ M.

Figure S5. UV-vis spectra of **4h** (5×10^{-6} M) in DMSO/H₂O (2 : 8, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Al³⁺ (0, 1, 2, 3, 4, 5, 6, 7, 8 and 10) ×10⁻⁶ M.

Figure S6. UV-vis spectra of **6g** (5×10⁻⁶ M) in DMSO/H₂O (2 : 8, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Al³⁺ (0, 1, 2, 3, 4, 5, 6, 7, 8 and 10) ×10⁻⁶ M.

Figure S7. UV-vis spectra of **6j** (5×10^{-6} M) in DMSO/H₂O (2 : 8, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Al³⁺ (0, 1, 2, 3, 4, 5, 6, 7, 8 and 10) ×10⁻⁶ M.

Figure S8. Emission spectra of **4a** (5 × 10⁻⁶ M) in the presence of increasing amounts of $[Al^{3+}]$ (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 (×10⁻⁶) M in DMSO/H₂O (2 : 8, v/v) HEPES buffer (pH = 7.4) solution (λ_{ex} = 310.33 nm, λ_{em} = 504.90 nm). Inset: Fluorescence emission intensity of **4a** at 504.90 nm as a function of $[Al^{3+}]$.

Figure S9. Emission spectra of **4e** $(5 \times 10^{-6} \text{ M})$ in the presence of increasing amounts of $[\text{Al}^{3+}]$ (0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9 and 10 (×10⁻⁶) M in DMSO/H₂O (2 : 8, v/v)

HEPES buffer (pH = 7.4) solution ($\lambda_{ex} = 308.69$ nm, $\lambda_{em} = 489.25$ nm). Inset: Fluorescence emission intensity of 4e at 489.25 nm as a function of [Al³⁺].

Figure S10. Emission spectra of **4g** (5 × 10⁻⁶ M) in the presence of increasing amounts of $[Al^{3+}]$ (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 (×10⁻⁶) M in DMSO/H₂O (2 : 8, v/v) HEPES buffer (pH = 7.4) solution (λ_{ex} = 308.97 nm, λ_{em} = 491.22 nm). Inset: Fluorescence emission intensity of 4g at 491.22 nm as a function of $[Al^{3+}]$.

Figure S11. Emission spectra of **4h** (5×10^{-6} M) in the presence of increasing amounts of [Al³⁺] (0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9 and 10 (×10⁻⁶) M in DMSO/H₂O (2 : 8, v/v)

HEPES buffer (pH = 7.4) solution ($\lambda_{ex} = 305.82$ nm, $\lambda_{em} = 505.31$ nm). Inset: Fluorescence emission intensity of 4h at 505.31 nm as a function of [Al³⁺].

Figure S12. Emission spectra of **6j** (5 × 10⁻⁶ M) in the presence of increasing amounts of [Al³⁺] (0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9 and 10 (×10⁻⁶) M in DMSO/H₂O (2 : 8, v/v) HEPES buffer (pH = 7.4) solution (λ_{ex} = 320.11 nm, λ_{em} = 485.65 nm). Inset: Fluorescence emission intensity of 6j at 485.65 nm as a function of [Al³⁺].

Figure S13. Fluorescence emission spectra of **4a** (5×10^{-6} M) in the presence of 4 equiv. of different cations except 2 equiv. of Al³⁺ in solution [the majenta bar portion]. Fluorescence intensity of a mixture of **4a** (5×10^{-6} M) with other metal ions (20×10^{-6} M) followed by addition of Al³⁺ (10×10^{-6} M) to the HEPES buffer (pH = 7.4) solution [the cyan bar portion] ($\lambda_{ex} = 310.33$ nm, $\lambda_{em} = 504.90$ nm).

Figure S14. Fluorescence emission spectra of **4e** (5×10^{-6} M) in the presence of 4 equiv. of different cations except 2 equiv. of Al³⁺ in solution [the red bar portion]. Fluorescence intensity of a mixture of 4e (5×10^{-6} M) with other metal ions (20×10^{-6} M) followed by addition of Al³⁺ (10×10^{-6} M) to the HEPES buffer (pH = 7.4) solution [the green bar portion] ($\lambda_{ex} = 308.69$ nm, $\lambda_{em} = 489.25$ nm).

Figure S15. Fluorescence emission spectra of 4g (5 × 10⁻⁶ M) in the presence of 4 equiv. of different cations except 2 equiv. of Al³⁺ in solution [the majenta bar portion]. Fluorescence intensity of a mixture of 4g (5 × 10⁻⁶ M) with other metal ions (20 × 10⁻⁶ M) followed by addition of Al³⁺ (10 × 10⁻⁶ M) to the HEPES buffer (pH = 7.4) solution [the yellow bar portion] ($\lambda_{ex} = 308.97$ nm, $\lambda_{em} = 491.22$ nm).

Figure S16. Fluorescence emission spectra of **4h** (5×10^{-6} M) in the presence of 4 equiv. of different cations except 2 equiv. of Al³⁺ in solution [the red bar portion]. Fluorescence intensity of a mixture of 4h (5×10^{-6} M) with other metal ions (20×10^{-6} M) followed by addition of Al³⁺ (10×10^{-6} M) to the HEPES buffer (pH = 7.4) solution [the yellow bar portion] ($\lambda_{ex} = 305.82$ nm, $\lambda_{em} = 505.31$ nm).

Figure S17. Fluorescence emission spectra of **6j** (5 × 10⁻⁶ M) in the presence of 4 equiv. of different cations except 2 equiv. of Al³⁺ in solution [the red bar portion]. Fluorescence intensity of a mixture of **6j** (5 × 10⁻⁶ M) with other metal ions (20 × 10⁻⁶ M) followed by addition of Al³⁺ (10 × 10⁻⁶ M) to the HEPES buffer (pH = 7.4) solution [the cyan bar portion] (λ_{ex} = 320.11 nm, λ_{em} = 485.65 nm)

Figure S18. Job's plot for determination of stoichiometry of Al^{3+} : 4a complex in solution.

Figure S19. Job's plot for determination of stoichiometry of Al^{3+} : **4e** complex in solution.

Figure S20. Job's plot for determination of stoichiometry of Al^{3+} : 4g complex in solution.

Figure S21. Job's plot for determination of stoichiometry of Al³⁺: **4h** complex in solution.

Figure S22. Job's plot for determination of stoichiometry of Al^{3+} : **6g** complex in solution.

According to the linear Benesi–Hildebrand expression, the measured fluorescence intensity $(F - F_0)/(F_x - F_0)$ varied as a function of $1/[Al^{3+}]$ in a linear relationship, which indicates the formation of 1 : 1 stoichiometry between Al³⁺ and chemosensors (4a, 4e, 4g, 4h, 6g, 6j) in the complex.

$$\frac{1}{F_X - F_0} = \frac{1}{F_{max} - F_0} + \frac{1}{K[C]} \left(\frac{1}{F_{max} - F_0}\right)$$

where F_0 , F_x and F_{max} are the emission intensities of organic moiety considered in the absence of Al^{3+} ions, at an intermediate Al^{3+} concentration and at a concentration of complete interaction, respectively, *K* is the binding constant and *[C]* is the concentration of Al^{3+} ions.

Figure S24. Benesi-Hildebrand plot $[(F-F_0)/(F_x-F_0)]$ vs. 1/ $[Al^{3+}]$ for complexation between **4a** and Al^{3+} derived from emission titration curve.

Figure S25. Benesi-Hildebrand plot $[(F-F_0)/(F_x-F_0)]$ vs. 1/ $[Al^{3+}]$ for complexation between **4e** and Al^{3+} derived from emission titration curve.

Figure S26. Benesi-Hildebrand plot $[(F-F_0)/(F_x-F_0)]$ vs. 1/ $[Al^{3+}]$ for complexation between **4g** and Al^{3+} derived from emission titration curve.

Figure S27. Benesi-Hildebrand plot $[(F-F_0)/(F_x-F_0)]$ vs. 1/ $[Al^{3+}]$ for complexation between **4h** and Al^{3+} derived from emission titration curve.

Figure S28. Benesi-Hildebrand plot $[(F-F_0)/(F_x-F_0)]$ vs. 1/ $[Al^{3+}]$ for complexation between **6g** and Al^{3+} derived from emission titration curve.

Figure S29. Benesi-Hildebrand plot $[(F-F_0)/(F_x-F_0)]$ vs. 1/ $[Al^{3+}]$ for complexation between **6j** and Al^{3+} derived from emission titration curve.

Detection limit calculation in emission spectroscopy

The limit of detection (LOD) of compounds (4a, 4e, 4h, 4g, 6j, 6g) with Al^{3+} was measured on the basis of fluorescence titration measurement. The detection limit was calculated using the following equation:

$$DL = K \times \frac{\sigma}{S}$$

Figure S30. The limit of detection (LOD) of **4a** for Al^{3+} as a function of $[Al^{3+}]$.

Figure S31. The limit of detection (LOD) of **4e** for AI^{3+} as a function of $[AI^{3+}]$.

Figure S32. The limit of detection (LOD) of 4g for Al^{3+} as a function of $[Al^{3+}]$.

Figure S33. The limit of detection (LOD) of **4h** for Al^{3+} as a function of $[Al^{3+}]$.

Figure S34. The limit of detection (LOD) of **6g** for Al^{3+} as a function of $[Al^{3+}]$.

Figure S35. The limit of detection (LOD) of **6j** for Al^{3+} as a function of $[Al^{3+}]$.

Figure S36. Fluorescence emission spectra of chemosensor (4a) in the presence of Al^{3+} ion followed by addition of EDTA.

Figure S37. Fluorescence emission spectra of chemosensor (4e) in the presence of Al^{3+} ion followed by addition of EDTA.

Figure S38. Fluorescence emission spectra of chemosensor (4g) in the presence of Al^{3+} ion followed by addition of EDTA.

Figure S39. Fluorescence emission spectra of chemosensor (4h) in the presence of Al^{3+} ion followed by addition of EDTA.

Figure S40. Fluorescence emission spectra of chemosensor (6g) in the presence of Al^{3+} ion followed by addition of EDTA.

Figure S41. Fluorescence emission spectra of chemosensor (6j) in the presence of Al^{3+} ion followed by addition of EDTA.

Figure S42. Emission intensity of compounds 4a, 4e, 4g, 4h, 6g and 6j in absence and in presence of Al^{3+} at different pH values in aqueous DMSO solution.

Figure 43. Anion independency of emission intensity of **4a** and **4e** in presence of various Al^{3+} salts [e.g. $Al(ClO_4)_3$, $AlCl_3$ and $Al(NO_3)_3$].

Figure 44. Anion independency of emission intensity of 4g and 4h in presence of various Al^{3+} salts [e.g. $Al(ClO_4)_3$, $AlCl_3$ and $Al(NO_3)_3$].

Figure 45. Anion independency of emission intensity of **6j** in presence of various Al^{3+} salts [e.g. $Al(ClO_4)_3$, $AlCl_3$ and $Al(NO_3)_3$].

Figure 46. Excitation spectra of 4a and 4e in presence of Al^{3+} in solution.

Figure 47. Excitation spectra of 4g and 4h in presence of Al^{3+} in solution.

Figure 48. Excitation spectra of 6j in presence of Al^{3+} in solution.

Figure 49. ¹**H** NMR titration of chemosensor **6j** with Al^{3+} ion in DMSO- d_6 solvent.

studied in various solvents.				
Compound	$\lambda_{ex}(nm)$	$\lambda_{em} (nm)$	$\Delta\lambda[\lambda_{abs}-\lambda_{em}]$	Quantum yield $(\boldsymbol{\Phi}_f)$
			(nm)	
	I	DMS)	
4a	309.87	503.74	193.87	0.063
4e	307.81	487.65	179.84	0.069
4g	305.55	489.72	184.17	0.067
4h	304.95	504.19	199.24	0.065
6g	313.98	506.69	192.71	0.061
6ј	318.76	484.35	165.59	0.064
		DMF		
4a	310.21	502.61	192.4	0.065
4 e	309.76	489.57	179.81	0.061
4g	304.77	491.87	187.10	0.062
4h	306.38	503.28	196.90	0.068
6g	310.93	508.73	197.80	0.067
6ј	311.01	497.44	186.43	0.063
ACN				
4 a	311.81	505.52	193.71	0.067
4 e	306.54	492.38	185.84	0.064
4g	305.32	493.74	188.42	0.069
4h	307.43	504.79	197.36	0.063
6g	312.13	502.43	190.30	0.071
бј	309.17	499.61	190.44	0.062
MeOH				

4a	314.82	503.14	188.32	0.063
4 e	308.51	499.82	191.31	0.062
4g	313.43	493.71	180.28	0.068
4h	310.35	504.45	194.10	0.064
6g	310.18	504.63	194.45	0.067
6j	311.52	510.12	198.60	0.065
		EtOH		
4 a	313.75	504.25	190.50	0.060
4 e	310.11	502.31	192.20	0.061
4g	315.62	497.68	182.06	0.067
4h	309.74	500.53	190.79	0.063
6g	311.68	506.52	194.84	0.066
6ј	312.13	511.14	199.01	0.064
		THF		
4 a	313.24	506.78	193.54	0.061
4 e	314.03	509.02	194.99	0.064
4g	316.12	508.59	192.47	0.065
4h	310.54	511.47	200.93	0.062
6g	311.85	510.31	198.46	0.070
6ј	313.24	513.35	200.11	0.068
DCM				
4 a	311.82	510.02	198.20	0.060
4 e	316.14	512.86	196.72	0.063
4g	313.51	513.29	199.78	0.067
4h	307.38	503.64	196.26	0.065

6g	312.35	511.63	199.28	0.069	
бј	315.23	514.47	199.24	0.062	
CHCl ₃					
4a	312.31	511.88	199.57	0.065	
4 e	316.61	513.14	196.53	0.068	
4g	314.36	509.98	195.62	0.061	
4h	313.28	514.59	201.31	0.063	
6g	311.47	510.75	199.28	0.067	
6ј	310.99	512.24	201.25	0.064	

Table S5. Stability constant (*K*) and Limit of detection were studied with complexation properties of the compounds (**4a**, **4e**, **4g**, **4h**, **6g and 6j**).

Compound	Quantum yield $(\boldsymbol{\Phi}_f)$	Stability constant (K)	Limit of detection (LOD) (M)
		(M ⁻¹)	
4a	0.064 (Free 4a)	30.42×10^4	6.69 ×10 ⁻⁷
	$0.265 (4a + Al^{3+})$		
4e	0.067 (Free 4e)	33.85×10^4	7.52 ×10 ⁻⁷
	$0.268 (4e + Al^{3+})$		
4g	0.066 (Free 4 g)	32.27×10^4	4.09 ×10 ⁻⁷
	$0.273 (4g + Al^{3+})$		
4h	0.061 (Free 4h)	37.60×10^4	8.41 ×10 ⁻⁷
	$0.276 (\mathbf{4h} + \mathrm{Al}^{3+})$		
6g	0.063 (Free 6g)	38.46×10^4	6.37 ×10 ⁻⁷
	$0.281 (6g + Al^{3+})$		
бј	0.068 (Free 6j)	36.33×10^4	7.84×10^{-7}
	0.279 (6j + Al ³⁺)		

Probes	Detection limit	Binding	Ref.
	7	constant	
	$5.0 \times 10^{-7} \mathrm{M}$	8.84×10^{3} M ⁻¹	Org. Lett., 2011, 13, 5274
	0.75M	$4.0 \times 10^4 \mathrm{M}^{-1}$	Song Actuators
	0.75 µivi	4.9 × 10 IVI	B, 2018, 264, 304
HN + + N CH ₃ CH ₃ CH ₃	0.02 μM		ACS Omega 2017, 2, 9150–9155
	_	2.13×10 ³ M ⁻¹	New J. Chem., 2018,42, 10891- 10897

Table S6. Comparison with recently reported probes for selective detection of Al^{3+} ion.

	$1.24 \times 10^{-3} \mathrm{mM}$	_	RSC Adv., 2016,
\frown			6, 37944–37952
он но			
	1.2.10-815	2 4 4 26 2 5-1	
0	$1.2 \times 10^{\circ} M$	$2.4 \times 10^{\circ} \text{ M}^{-1}$	RSC Adv.,
			2016,6, 28034-
			28037
~	1 5 uM	$6.1 \times 10^3 \mathrm{M}^{-1}$	New I Chem
HONO2	1.5 µlvi	0.1×10 101	2016 40 7536
			2010, 40, 7550 7541
он М			/J41
N N			
	0.5 nM	3.36×10^5	Inorg. Chem.,
		M^{-1}	2016, 55, 9212
N OH			
HN			
¥.			
		10.00	
~ ~	4.61×10^{-7} (M)	$ 10.39 \times 10^4$	3. Sensors and
			Actuators B 239
			(2017) 1194–
The second se			1204
ОН			
L L			
NOT NOT			

~	$6.03 \times 10^{-7} (M)$	0.35×10^5	2. Analyst
		(M^{-1})	137(2012) 3975-
IN O			3981
	$0.5 \times 10^{-6} (M)$	7.9×10^4	4. Dalton Trans.
		(M^{-1})	42 (2013)
			10198-10207
^	$5.6 \times 10^{-6} (M)$	3.90×10^{3}	5. Inorg. Chem.
ſ [™]		(M^{-1})	Commun. 35
			(2013) 273–275
	7		
\frown \frown	1.0×10^{-7} (M)	2.12×10^{3}	6. Org. Biomol.
N N N		(M)	Chem. 9 (2011)
			5523-5529
	$1.1 \times 10^{-5} (M)$	3.90×10^{10}	7. Inorg. Chem.
$\left(\begin{array}{c} \end{array} \right)$		(M^{-1})	Commun. 33
			(2013) 48–51
Γ Υ ^{OH} Υ			
\checkmark			