Supporting Information

The Radical Acylarylation of N-Arylacrylamides with Aliphatic Aldehydes using the Photolysis of Hypervalent Iodine(III) Reagents

Ryu Sakamoto, † Naomichi Hirama, † and Keiji Maruoka*,†,‡
maruoka@kuchem.kyoto-u.ac.jp

†Laboratory of Synthetic Organic Chemistry and Special Laboratory of Organocatalytic Chemistry, Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

‡School of Chemical Engineering and Light Industry, Guangdong University of Technology, No.100, West Waihuan Road, HEMC, 4 Panyu District, Guangzhou 510006, China
General Information

1H NMR spectra were measured on JEOL JNM-ECA500 (500 MHz) spectrometer. Data were reported as follows: chemical shifts in ppm from tetramethylsilane as an internal standard in CDCl$_3$, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet-doublet, m = multiplet, app = apparent), coupling constants (Hz), and assignment. 13C NMR spectra were measured on JEOL JNM-ECA500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. Infrared (IR) spectra were recorded on a Thermo Scientific Nicolet iS5 spectrometer. High-resolution mass spectra (HRMS) were performed on Brucker microTOF and Thermo Exactive plus. The products were purified by flash column chromatography (silica gel 60, Merck, 230-400 mesh). Light irradiation was performed with an OptoCode LED lamp (5 μW/cm2, λ = 365 nm).

N-Arylacrylamides 1 were prepared according to the literature procedure[1]. Commercially available reagents were purchased from Wako, Aldrich, TCI and Alfa-aesar chemicals. Aldehydes were used after the distillation. Dichloromethane (CH$_2$Cl$_2$) was purchased from Wako as “Super Dehydrated”.
Optimization Conditions (Table S1)*

<table>
<thead>
<tr>
<th>Entry</th>
<th>1a</th>
<th>Solvent (M)</th>
<th>Time (h)</th>
<th>3a (%)</th>
<th>3a (%)</th>
<th>3a (%)</th>
<th>4a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>MeCN (1.0)</td>
<td>24</td>
<td>56</td>
<td>35</td>
<td>3</td>
<td>6 (R = Me)</td>
</tr>
<tr>
<td>2</td>
<td>2a</td>
<td>MeCN (1.0)</td>
<td>43</td>
<td>7</td>
<td>50</td>
<td>5</td>
<td>20 (R = Me)</td>
</tr>
<tr>
<td>3</td>
<td>2a</td>
<td>MeCN (2.4)</td>
<td>66</td>
<td>19</td>
<td>40</td>
<td>7</td>
<td>4 (R = Me)</td>
</tr>
<tr>
<td>4</td>
<td>2a</td>
<td>MeCN (0.1)</td>
<td>24</td>
<td>37</td>
<td>26</td>
<td>23</td>
<td>13 (R = Me)</td>
</tr>
<tr>
<td>5</td>
<td>2a</td>
<td>Benzene (1.0)</td>
<td>43</td>
<td>60</td>
<td>18</td>
<td>1</td>
<td>7 (R = Me)</td>
</tr>
<tr>
<td>6</td>
<td>2a</td>
<td>DMF (1.0)</td>
<td>43</td>
<td>23</td>
<td>50</td>
<td>9</td>
<td>14 (R = Me)</td>
</tr>
<tr>
<td>7</td>
<td>2a</td>
<td>DCE (1.0)</td>
<td>43</td>
<td>10</td>
<td>53</td>
<td>3</td>
<td>7 (R = Me)</td>
</tr>
<tr>
<td>8</td>
<td>2a</td>
<td>PhH (1.0)</td>
<td>43</td>
<td><1</td>
<td>52</td>
<td>10</td>
<td>7 (R = Me)</td>
</tr>
<tr>
<td>9</td>
<td>2a</td>
<td>NMM (1.0)</td>
<td>43</td>
<td>6</td>
<td>44</td>
<td>7</td>
<td>17 (R = Me)</td>
</tr>
<tr>
<td>10</td>
<td>2a</td>
<td>CH2Cl2 (1.0)</td>
<td>43</td>
<td>12</td>
<td>60 (54)</td>
<td>9</td>
<td>5 (R = Me)</td>
</tr>
<tr>
<td>11</td>
<td>2a</td>
<td>CH2Cl2 (1.0)</td>
<td>87</td>
<td>5</td>
<td>33</td>
<td>8</td>
<td>3 (R = Me)</td>
</tr>
<tr>
<td>12</td>
<td>2a</td>
<td>CH2Cl2 (1.0)</td>
<td>43</td>
<td><1</td>
<td>35</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>2c</td>
<td>CH2Cl2 (1.0)</td>
<td>43</td>
<td>26</td>
<td>25</td>
<td>8</td>
<td>12 (R = Me)</td>
</tr>
<tr>
<td>14</td>
<td>2d</td>
<td>CH2Cl2 (1.0)</td>
<td>43</td>
<td>39</td>
<td>34</td>
<td>4</td>
<td>14 (R = Me)</td>
</tr>
<tr>
<td>15</td>
<td>2e</td>
<td>CH2Cl2 (1.0)</td>
<td>43</td>
<td><1</td>
<td>nd</td>
<td>nd</td>
<td>trace (R = CF3)</td>
</tr>
<tr>
<td>16</td>
<td>2f</td>
<td>CH2Cl2 (1.0)</td>
<td>43</td>
<td>54</td>
<td>nd</td>
<td>12</td>
<td>31 (R = CH3)</td>
</tr>
</tbody>
</table>

(a) Unless otherwise specified, reactions were conducted in a solvent in the presence of 1a (0.2 mmol), glycidoxypropionaldehydes (0.8 mmol), and 2 (0.4 mmol) under irradiation with UV light (λ = 365 nm). (b) The yield was determined by °H NMR spectroscopy using nitromethane as the internal standard. (c) Isolated yield. (d) The reaction was conducted on 1 mmol scale.

General Procedure for Acylation / Cyclization of N-Arylacrylamide 1 (Scheme 2)

To a mixture of N-arylacrylamide 1 (0.2 mmol), (diacetoxyiodo)benzene (128.8 mg, 0.4 mmol) in CH2Cl2 (0.2 mL) was added an aldehyde (0.8 mmol) under nitrogen atmosphere at room temperature. The reaction mixture was stirred for 43 h at room temperature under UV light (365 nm). The mixture was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel to afford the following product.

3-(2-Cyclohexyl-2-oxoethyl)-1,3-dimethylindolin-2-one (3a) (liquid, 31.0 mg, 54%) °H NMR (500 MHz, CDCl3) δ 7.24 (app t, J = 7.8 Hz, 1H), 7.10 (d, J = 7.1 Hz, 1H), 6.98 (app t, J = 7.4 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 3.27 (s, 3H), 3.15 (d, J = 17.9 Hz, 1H), 3.08 (d, J = 17.9 Hz, 1H), 2.20-2.15 (m, 1H), 1.71-1.69 (m, 4H), 1.59 (t, J = 12.8 Hz, 1H), 1.32 (s, 3H), 1.25-1.15 (m, 3H), 1.13-1.05 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 210.1, 180.7, 144.0, 133.9, 127.9, 122.2, 121.7, 108.3, 50.6, 48.0, 45.2, 28.4, 28.1, 26.6, 25.9, 25.7, 25.6, 24.7; HRMS calculated for C18H23O2N: m/z 286.1802 ([M + H]+), found: m/z 286.1800 ([M + H]+); IR (neat) 2928, 1708, 1614, 1494, 1378 cm⁻1.
1-Benzyl-3-(2-cyclohexyl-2-oxoethyl)-3-methylindolin-2-one (3b)

(liquid, 40.7 mg, 56%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.38 (d, \(J = 7.4\) Hz, 2H), 7.32 (t, \(J = 7.5\) Hz, 2H), 7.25 (t, \(J = 7.2\) Hz, 1H), 7.12-7.09 (m, 2H), 6.95 (t, \(J = 7.5\) Hz, 1H), 6.69 (d, \(J = 7.7\) Hz, 1H), 5.09 (d, \(J = 15.9\) Hz, 1H), 4.88 (d, \(J = 15.6\) Hz, 1H), 3.21 (d, \(J = 17.9\) Hz, 1H), 3.15 (d, \(J = 17.9\) Hz, 1H), 2.21 (m, 1H), 1.75-1.70 (m, 4H), 1.62 (d, \(J = 12.8\) Hz, 1H), 1.39 (s, 3H), 1.30-1.08 (m, 5H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 209.9, 180.7, 143.0, 136.4, 133.9, 128.8, 127.8, 127.5, 127.4, 122.3, 121.7, 109.4, 50.6, 47.7, 45.3, 44.1, 28.4, 28.2, 25.9, 25.8, 25.6, 25.3; HRMS calculated for C\(_{24}\)H\(_{23}\)O\(_2\)Na: \(m/z\) 384.1934 ([M + Na\(^{\ast}\)], found: \(m/z\) 384.1942 ([M + Na\(^{\ast}\)]); IR (neat) 2930, 1707, 1614, 1489, 907 cm\(^{-1}\).

3-(2-Cyclohexyl-2-oxoethyl)-1-isopropyl-3-methylindolin-2-one (3c)

(liquid, 33.8 mg, 54%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.19 (app t, \(J = 7.8\) Hz, 1H), 7.09 (d, \(J = 7.4\) Hz, 1H), 7.02 (d, \(J = 7.9\) Hz, 1H), 6.95 (t, \(J = 7.4\) Hz, 1H), 4.71-4.62 (m, 1H), 3.12 (d, \(J = 17.9\) Hz, 1H), 3.06 (d, \(J = 17.9\) Hz, 1H), 2.18-2.14 (m, 1H), 1.70 (m, 4H), 1.60 (d, \(J = 11.9\) Hz, 1H), 1.54 (d, \(J = 7.1\) Hz, 3H), 1.51 (d, \(J = 7.1\) Hz, 3H), 1.30 (s, 3H), 1.25-1.06 (m, 5H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 209.8, 180.3, 142.6, 134.4, 127.6, 121.9, 121.6, 110.1, 50.7, 48.0, 45.0, 43.8, 28.4, 28.1, 25.9, 25.8, 25.6, 25.1, 19.6, 19.2; HRMS calculated for C\(_{20}\)H\(_{17}\)O\(_2\)Na: \(m/z\) 336.1934 ([M + Na\(^{\ast}\)], found: \(m/z\) 336.1940 ([M + Na\(^{\ast}\)]); IR (neat) 2928, 1703, 1610, 1355, 753, 737 cm\(^{-1}\).

3-(2-Cyclohexyl-2-oxoethyl)-5-fluoro-1,3-dimethylindolin-2-one (3d)

(liquid, 23.8 mg, 39%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 6.95-6.91 (m, 1H), 6.86 (dd, \(J = 7.9\), 2.6 Hz, 1H), 6.76 (dd, \(J = 8.5\), 4.0 Hz, 1H), 3.25 (s, 3H), 3.11 (s, 2H), 2.22-2.17 (m, 1H), 1.72 (m, 4H), 1.63-1.60 (m, 1H), 1.31 (s, 3H), 1.25-1.07 (m, 5H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 210.0, 180.3, 159.3 (d, \(J_{C-F} = 240\) Hz), 139.9, 135.6 (d, \(J_{C-F} = 7.5\) Hz), 113.9 (d, \(J_{C-F} = 23.8\) Hz), 110.3 (d, \(J_{C-F} = 23.8\) Hz), 108.6 (d, \(J_{C-F} = 7.5\) Hz), 50.5, 47.9, 45.6, 28.4, 28.2, 26.7, 25.8, 25.7, 25.6, 24.6; HRMS calculated for C\(_{18}\)H\(_{22}\)O\(_2\)NFNa: \(m/z\) 326.1527 ([M + Na\(^{\ast}\)], found: \(m/z\) 326.1530 ([M + Na\(^{\ast}\)]); IR (neat) 2931, 1707, 1495, 907, 730 cm\(^{-1}\).

3-(2-Cyclohexyl-2-oxoethyl)-5-iodo-1,3-dimethylindolin-2-one (3e)

(liquid, 39.6 mg, 48%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.55 (dd, \(J = 8.2\), 1.7 Hz, 1H), 7.36 (d, \(J = 1.7\) Hz, 1H), 6.64 (d, \(J = 8.2\) Hz, 1H), 3.23 (s, 3H), 3.10 (app d, \(J = 1.7\) Hz, 2H), 2.22-2.17 (m, 1H), 1.78-1.71 (m, 4H), 1.62 (d, \(J = 13.0\) Hz, 1H), 1.30 (s, 3H), 1.27-1.08 (m, 5H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 210.0,
179.9, 143.8, 136.7, 136.5, 130.5, 110.4, 84.7, 50.5, 48.0, 45.2, 28.3, 28.3, 26.6, 25.9, 25.7, 25.6, 24.7; HRMS calculated for C_{18}H_{22}O_{2}N_{1}Na: m/z 434.0587 ([M + Na]^+) found: m/z 434.0588 ([M + Na]^+); IR (neat) 2929, 1708, 1604, 1489, 907, 730 cm\(^{-1}\).

3-(2-Cyclohexyl-2-oxoethyl)-5-methoxy-1,3-dimethylindolin-2-one (3f) (liquid, 30.0 mg, 48%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 6.75-6.73 (m, 3H), 3.77 (s, 3H), 3.24 (s, 3H), 3.10 (app d, \(J = 2.6\) Hz, 2H), 2.21-2.16 (m, 1H), 1.73-1.69 (m, 4H), 1.61 (d, \(J = 11.6\) Hz, 1H), 1.31 (s, 3H), 1.25-1.06 (m, 5H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 210.1, 180.3, 155.9, 137.6, 135.4, 111.5, 109.9, 108.4, 55.9, 50.6, 47.9, 45.6, 28.4, 28.2, 26.6, 25.9, 25.7, 25.6, 24.8; HRMS calculated for C_{19}H_{25}O_{3}N_{1}Na: m/z 338.1727 ([M + Na]^+), found: m/z 338.1735 ([M + Na]^+); IR (neat) 2929, 1708, 1614, 1489, 908 cm\(^{-1}\).

3-(2-Cyclohexyl-2-oxoethyl)-6-methoxy-1,3-dimethylindolin-2-one (3g) (major) (liquid, 19.9 mg, 32%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.19 (app t, \(J = 8.2\) Hz, 1H), 6.53 (app t, \(J = 7.5\) Hz, 2H), 3.81 (s, 3H), 3.58 (d, \(J = 17.6\) Hz, 1H), 3.25 (s, 3H), 2.99 (d, \(J = 17.6\) Hz, 1H), 2.18 (m, 1H), 1.69-1.67 (m, 4H), 1.62-1.58 (m, 1H), 1.35 (s, 3H), 1.27-1.02 (m, 5H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 210.9, 181.1, 155.4, 145.3, 129.0, 119.1, 105.4, 101.9, 55.3, 50.6, 46.7, 45.4, 28.4, 28.0, 26.8, 25.9, 25.9, 25.6, 22.6; HRMS calculated for C_{19}H_{25}O_{3}N_{1}Na: m/z 338.1727 ([M + Na]^+), found: m/z 338.1734 ([M + Na]^+); IR (neat) 2929, 1709, 1608, 1475, 1260, 1070 cm\(^{-1}\).

3-(2-cyclohexyl-2-oxoethyl)-6-methoxy-1,3-dimethylindolin-2-one (3g) (minor) (liquid, 10.2 mg, 16%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.00 (d, \(J = 8.2\) Hz, 1H), 6.48 (dd, \(J = 7.9, 2.3\) Hz, 1H), 6.44 (d, \(J = 2.3\) Hz, 1H), 3.81 (s, 3H), 3.24 (s, 3H), 3.11 (d, \(J = 17.6\) Hz, 1H), 3.03 (d, \(J = 17.9\) Hz, 1H), 2.17-2.19 (m, 1H), 1.70 (app d, \(J = 9.6\) Hz, 4H), 1.61 (app d, \(J = 11.9\) Hz, 1H), 1.30 (s, 3H), 1.08-1.28 (m, 5H).

1-(2-Cyclohexyl-2-oxoethyl)-1-methyl-5,6-dihydro-4H-pyrrolo[3,2-1ij]quinolin-2(1H)-one (3h) (liquid, 33.8 mg, 54%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 6.98 (d, \(J = 7.4\) Hz, 1H), 6.95 (d, \(J = 7.4\) Hz, 1H), 6.87 (t, \(J = 7.5\) Hz, 1H), 3.78-3.75 (m, 2H), 3.13 (d, \(J = 17.9\) Hz, 1H), 3.04 (d, \(J = 17.9\) Hz, 1H), 2.84-2.74 (m, 2H), 2.20-2.15 (m, 1H), 2.12-1.97 (m, 2H), 1.70 (m, 4H), 1.62-1.59 (m, 1H), 1.34 (s, 3H), 1.28-1.06 (m, 5H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 210.2, 179.5, 139.7, 132.4, 126.7, 121.7, 120.2, 119.8, 50.7, 47.8, 46.5, 39.0, 28.4, 28.1, 25.9, 25.8, 25.6, 24.8, 24.3, 21.3; HRMS calculated for C_{20}H_{25}O_{3}N_{1}Na: m/z 334.1778
([M + Na]+), found: m/z 334.1773 ([M + Na]+); IR (neat) 2928, 1703, 1627, 1355, 907, 728 cm⁻¹.

3-(2-Cyclohexyl-2-oxoethyl)-1-methyl-3-(trifluoromethyl)indolin-2-one (3i)
(solid, m.p.: 89–91 °C, 54.5 mg, 80%) ¹H NMR (500 MHz, CDCl₃) 7.36 (dd, J = 8.1, 7.5 Hz, 1H), 7.19 (d, J = 7.4 Hz, 1H), 7.04 (app t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.9 Hz, 1H), 3.53 (d, J = 17.9 Hz, 1H), 3.45 (d, J = 18.1 Hz, 1H), 3.30 (s, 3H), 2.25 (m, 1H), 1.76-1.70 (m, 4H), 1.62 (d, J = 11.3 Hz, 1H), 1.28-1.17 (m, 3H), 1.14-1.05 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 207.7, 171.8, 145.7, 130.1, 124.6 (q, J_{CF} = 284 Hz), 124.2, 123.5, 122.7, 108.8, 53.3 (q, J_{CF} = 26.4 Hz), 50.5, 41.5, 28.3, 28.1, 27.0, 25.7, 25.6, 25.4; HRMS calculated for C₁₈H₂₀O₂NF₃Na: m/z 362.1338 ([M + Na]+), found: m/z 362.1356 ([M + Na]+); IR (neat) 2932, 1728, 1614, 1262, 1168 cm⁻¹.

3-Benzyl-3-(2-cyclohexyl-2-oxoethyl)-1-methylindolin-2-one (3j)
(liquid, 40.9 mg, 57%) ¹H NMR (500 MHz, CDCl₃) δ 7.15 (app t, J = 7.7 Hz, 1H), 7.10-7.03 (m, 3H), 7.00 (d, J = 7.1 Hz, 1H), 6.95 (app t, J = 7.4 Hz, 1H), 6.79-6.78 (m, 2H), 6.59 (d, J = 7.9 Hz, 1H), 3.23 (app d, J = 3.4 Hz, 2H), 3.02 (d, J = 13.0 Hz, 1H), 3.00 (s, 3H), 2.96 (d, J = 13.0 Hz, 1H), 2.23-2.18 (m, 1H), 1.73-1.68 (m, 4H), 1.61 (d, J = 12.5 Hz, 1H), 1.27-1.04 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 209.9, 179.2, 144.4, 135.1, 131.0, 130.2, 128.0, 127.5, 126.7, 122.6, 121.7, 107.9, 50.9, 50.7, 46.8, 44.3, 28.4, 28.1, 26.1, 25.9, 25.7, 25.6; HRMS calculated for C₂₄H₂₇O₃Na: m/z 384.1934 ([M + Na]+), found: m/z 384.1938 ([M + Na]+); IR (neat) 2932, 1705, 1614, 907, 730 cm⁻¹.

3-(3-Ethyl-2-oxoheptyl)-1,3-dimethylindolin-2-one (3k)
The title compound was obtained as a diastereomeric mixture.
(liquid, 30.5 mg, 51%) ¹H NMR (500 MHz, CDCl₃) δ 7.24 (app t, J = 7.7 Hz, 1H), 7.10 (d, J = 7.4 Hz, 1H), 6.98 (app t, J = 7.4 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 3.28 (s, 3H), 3.13 (d, J = 18.1 Hz, 1H), 3.06 (dd, J = 18.0, 3.0 Hz, 1H), 2.23 (m, 1H), 1.51-1.16 (m, 9H), 1.10-0.94 (m, 2H), 0.84-0.79 (m, 3H), 0.74 (t, J = 7.5 Hz, 1.5H), 0.66 (t, J = 7.5 Hz, 1.5H); ¹³C NMR (125 MHz, CDCl₃) δ 211.0, 210.9, 180.6, 144.1, 133.7, 127.9, 122.1, 121.8, 108.2, 53.6, 53.5, 50.0, 49.6, 45.2, 31.1, 30.8, 29.6, 29.4, 26.6, 24.7, 24.6, 22.9, 14.0, 11.9, 11.6 (diastereomeric mixture); HRMS calculated for C₁₉H₂₄O₂Na: m/z 324.1934 ([M + Na]+), found: m/z 324.1939 ([M + Na]+); IR (neat) 2928, 1707, 1614, 1469, 1348, 752 cm⁻¹.
3-(3-Ethyl-2-oxopentyl)-1,3-dimethylindolin-2-one (3l)

(liquid, 19.3 mg, 35%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.23 (app t, \(J = 7.7\) Hz, 1H), 7.10 (d, \(J = 7.4\) Hz, 1H), 6.98 (app t, \(J = 7.5\) Hz, 1H), 6.85 (d, \(J = 7.9\) Hz, 1H), 3.27 (s, 3H), 3.13 (d, \(J = 18.1\) Hz, 1H), 3.07 (d, \(J = 18.1\) Hz, 1H), 2.20-2.15 (m, 1H), 1.53-1.41 (m, 2H), 1.32 (s, 3H), 1.38-1.28 (m, 2H), 0.74 (t, \(J = 7.4\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 210.9, 180.6, 144.0, 133.8, 127.9, 122.1, 121.7, 108.3, 55.0, 49.9, 45.2, 26.6, 24.7, 24.3, 24.2, 11.9, 11.6; HRMS calculated for C\(_{17}\)H\(_{23}\)O\(_2\)NNa: m/z 296.1621 ([M + Na\(^+\)], found: m/z 296.1624 ([M + Na\(^+\)]) ; IR (neat) 2963, 1708, 1614, 752 cm\(^{-1}\).

1,3-Dimethyl-3-(4-methyl-2-oxopentyl)indolin-2-one (3m)

(liquid, 24.8 mg, 48%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.24 (t, \(J = 8.1\) Hz, 1H), 7.12 (d, \(J = 7.4\) Hz, 1H), 6.99 (t, \(J = 7.5\) Hz, 1H), 6.86 (d, \(J = 7.7\) Hz, 1H), 3.26 (s, 3H), 3.05 (s, 2H), 2.12 (d, \(J = 2.6\) Hz, 1H), 2.11 (d, \(J = 1.7\) Hz, 1H), 2.01-1.93 (m, 1H), 1.32 (s, 3H), 0.77 (d, \(J = 1.7\) Hz, 3H), 0.76 (d, \(J = 1.7\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 206.9, 180.5, 143.9, 133.7, 128.0, 122.3, 121.9, 108.3, 51.9, 50.4, 45.3, 26.5, 24.7, 24.6, 22.6, 22.5; Other spectral data of the title compound were consistent with previously reported data.\(^{[2]}\)

1,3-Dimethyl-3-(2-oxo-4-phenylbutyl)indolin-2-one (3n)

(liquid, 41.2 mg, 67%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.29-7.15 (m, 4H), 7.09 (d, \(J = 7.4\) Hz, 1H), 7.02 (m, 3H), 6.87 (d, \(J = 7.7\) Hz, 1H), 3.27 (s, 3H), 3.09 (d, \(J = 17.9\) Hz, 1H), 3.03 (d, \(J = 17.6\) Hz, 1H), 2.71 (t, \(J = 7.7\) Hz, 2H), 2.64-2.51 (m, 2H), 1.33 (s, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 206.1, 180.2, 143.8, 140.9, 133.5, 128.6, 128.3, 128.1, 126.2, 122.4, 121.9, 108.3, 50.0, 45.3, 44.5, 29.5, 26.5, 24.6; HRMS calculated for C\(_{20}\)H\(_{21}\)O\(_2\)NNa: m/z 330.1465 ([M + Na\(^+\)], found: m/z 330.1471 ([M + Na\(^+\)]) ; IR (neat) 2927, 1708, 1614, 1495, 908, 704 cm\(^{-1}\).

1,3-Dimethyl-3-(2-oxopentyl)indolin-2-one (3o)

(liquid, 22.8 mg, 46%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.25 (app t, \(J = 8.0\) Hz, 1H), 7.13 (d, \(J = 7.4\) Hz, 1H), 7.00 (app t, \(J = 7.5\) Hz, 1H), 6.86 (d, \(J = 7.7\) Hz, 1H), 3.26 (s, 3H), 3.06 (s, 2H), 2.29-2.16 (m, 2H), 1.43 (m, 2H), 1.33 (s, 3H), 0.77 (t, \(J = 7.5\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 207.1, 180.5, 143.9, 133.7, 128.0, 122.3, 121.9, 108.3, 49.8, 45.3, 44.8, 26.5, 24.6, 17.0, 13.7; Other spectral data of the title compound were consistent with previously reported data.\(^{[2]}\)
1,3-Dimethyl-3-(2-oxo-2-phenylethyl)indolin-2-one (3p)

(liquid, 22.2 mg, 40%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.83 (d, \(J = 7.9\) Hz, 2H), 7.51 (t, \(J = 7.4\) Hz, 1H), 7.39 (t, \(J = 7.8\) Hz, 2H), 7.25 (t, \(J = 7.7\) Hz, 1H), 7.14 (d, \(J = 7.4\) Hz, 1H), 6.98 (t, \(J = 7.5\) Hz, 1H), 6.90 (d, \(J = 7.9\) Hz, 1H), 3.72 (d, \(J = 17.9\) Hz, 1H), 3.65 (d, \(J = 18.1\) Hz, 1H), 3.31 (s, 3H), 1.44 (s, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 196.2, 180.7, 144.0, 136.5, 133.9, 133.3, 128.6, 128.1, 128.0, 122.3, 121.9, 108.3, 46.2, 45.4, 26.6, 25.1; Other spectral data of the title compound were consistent with previously reported data.\(^2\)

2-Cyclohexyl-3a,8-dimethyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (5)

To a stirred solution of 3a (66.3 mg, 0.23 mmol) in THF (1.7 mL) was added LiAlH\(_4\) (17.5 mg, 0.46 mmol) at 0 °C under argon atmosphere in one portion. After stirring for 1.2 h at the same temperature, the reaction was quenched with H\(_2\)O, and the resulting mixture was stirred at room temperature until the generation of gas ceased. The reaction mixture was filtered through a plug of Celite with ethyl acetate. The filtrate was extracted with ethyl acetate, the combined organic layer was dried over Na\(_2\)SO\(_4\), and concentrated. The residue was purified by flash column chromatography on silica gel (eluting with ethyl acetate/hexane = 1/100) to afford the title compound as a diastereomeric mixture (liquid, 36.5 mg, 58%, dr = 12/1). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.10 (t, \(J = 7.7\) Hz, 1H), 7.02 (d, \(J = 7.4\) Hz, 1H), 6.68 (t, \(J = 7.4\) Hz, 1H), 6.39 (d, \(J = 7.9\) Hz, 1H), 4.95 (s, 1H), 3.73 (m, 1H), 2.93 (s, 3H), 2.07 (dd, \(J = 12.5, 6.5\) Hz, 1H), 1.94-1.91 (m, 1H), 1.88 (dd, \(J = 12.5, 8.0\) Hz, 1H), 1.68-1.58 (m, 3H), 1.48-1.45 (m, 1H), 1.37 (s, 3H), 1.18-1.03 (m, 4H), 0.93-0.78 (m, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 149.1, 136.4, 128.0, 122.3, 117.6, 106.6, 106.1, 83.3, 52.0, 44.2, 42.8, 31.9, 30.3, 29.3, 26.6, 26.0, 25.9, 24.1; HRMS calculated for C\(_{18}\)H\(_{25}\)ONa: \(m/z\) 294.1828 ([M + Na\(^+\)], found: \(m/z\) 294.1830 ([M + Na\(^+\)]); IR (neat) 2925, 1608, 1491, 1019, 906, 729 cm\(^{-1}\).
To a stirred solution of 3a (84.0 mg, 0.29 mmol) in MeOH/CHCl₃ (0.29 mL/0.29 mL) was added NaBH₄ (32.9 mg, 0.87 mmol) at -10 °C under argon atmosphere in portionwise. The reaction mixture was then stirred at room temperature for 2.5 h. The residue was quenched with H₂O and extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (eluting with ethyl acetate/hexane = 1/1) to afford the title compound (liquid, 72.3 mg, 87%). ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.7 Hz, 1H), 7.19 (d, J = 6.8 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 7.7 Hz, 1H), 3.64 (q, J = 4.8 Hz, 1H), 3.34 (s, 1H), 3.22 (s, 3H), 1.98 (d, J = 14.7 Hz, 1H), 1.76-1.62 (m, 7H), 1.42 (s, 1H), 1.32-0.98 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 182.1, 142.6, 135.4, 128.1, 123.1, 122.6, 108.5, 72.5, 47.4, 44.5, 42.0, 29.2, 27.8, 26.7, 26.5 (two peaks overlapped), 26.4, 23.0; HRMS calculated for C₁₈H₂₅O₂NNa: m/z 310.1778 ([M + Na]⁺), found: m/z 310.1784 ([M + Na]⁺); IR (neat) 3399, 2925, 1684, 1613, 1380, 907, 730 cm⁻¹.

1-Cyclohexyl-2-(1,3-dimethyl-2-oxoindolin-3-yl)ethyl Methanesulfonate (7)

To a stirred solution of 6 (70.4 mg, 0.24 mmol) in CH₂Cl₂ (1.5 mL) was added triethylamine (0.13 mL, 0.96 mmol) and MsCl (74.3 μL, 0.96 mmol) at 0 °C under argon atmosphere in dropwise. After stirring for 30 min at the same temperature, the reaction was quenched with H₂O and extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (eluting with ethyl acetate/hexane = 1/2) to afford the title compound (liquid, 59.4 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.28-
7.23 (m, 2H), 7.08 (t, \(J = 7.5 \) Hz, 1H), 6.87 (d, \(J = 7.9 \) Hz, 1H), 4.38-4.35 (m, 1H), 3.23 (s, 3H), 2.35 (s, 3H), 2.29 (dd, \(J = 15.0 \) Hz, 1H), 2.20 (dd, \(J = 15.5 \), 8.0 Hz, 1H), 1.76-1.50 (m, 6H), 1.37 (s, 3H), 1.27-0.96 (m, 5H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 179.6, 143.4, 133.4, 128.1, 123.3, 122.7, 108.6, 84.0, 46.9, 42.5, 38.1, 37.6, 27.8, 27.3, 26.44, 26.41, 26.2 (three peaks overlapped); HRMS calculated for C\(_{19}\)H\(_{27}\)O\(_4\)NNa: \(m/z \) 388.1553 ([M + Na]\(^+\)), found: \(m/z \) 388.1560 ([M + Na]\(^+\)); IR (neat) 2929, 1708, 1612, 1330, 1172, 905, 731 cm\(^{-1}\).

3-(2-Azido-2-cyclohexylethyl)-1,3-dimethylindolin-2-one (8)

To a stirred solution of 7 (77.4 mg, 0.21 mmol) in DMSO (0.53 mL) was added NaN\(_3\) (245.7 mg, 3.78 mmol) at room temperature under argon atmosphere. The reaction mixture was stirred at 70 °C for 12 h and then cooled to room temperature. The reaction was quenched with H\(_2\)O and extracted with ethyl acetate/hexane (1/3). The combined organic layer was washed with brine, dried over Na\(_2\)SO\(_4\), and concentrated. The residue was purified by flash column chromatography on silica gel (eluting with ethyl acetate/hexane = 1/5) to afford the title compound (liquid, 31.1 mg, 47%). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.31 (t, \(J = 7.7 \) Hz, 1H), 7.13 (d, \(J = 7.4 \) Hz, 1H), 7.08 (t, \(J = 7.4 \) Hz, 1H), 6.90 (d, \(J = 7.7 \) Hz, 1H), 3.27 (s, 3H), 2.62 (m, 1H), 2.17 (dd, \(J = 14.0 \), 11.5 Hz, 1H), 1.93 (dd, \(J = 14.5 \), 2.6 Hz, 1H), 1.72-1.62 (m, 5H), 1.37 (s, 3H), 1.35-0.91 (m, 6H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 180.5, 143.7, 132.8, 128.4, 122.7, 122.5, 108.6, 66.0, 46.9, 43.3, 40.2, 29.8, 28.8, 26.6, 26.3, 26.2, 26.1, 25.3; HRMS calculated for C\(_{18}\)H\(_{24}\)ON\(_4\)Na: \(m/z \) 335.1842 ([M + Na]\(^+\)), found: \(m/z \) 335.1851 ([M + Na]\(^+\)); IR (neat) 2927, 2097, 1714, 1613, 1471, 753, 731 cm\(^{-1}\).
To a stirred solution of 8 (51.0 mg, 0.16 mmol) in toluene (2.8 mL) was added sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al®) (0.72 mL, 65 wt% in toluene; 2.4 mmol) at 0 °C under argon atmosphere. The reaction mixture was allowed to warm to room temperature. After stirring for 1.5 h, the reaction mixture was heated to 100 °C for 14 h. After cooling to room temperature, the mixture was quenched with saturated aqueous sodium potassium tartrate, diluted with ethyl acetate, and stirred vigorously for 1 h. The mixture was then diluted with water and extracted with ethyl acetate. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (eluting with ethyl acetate/hexane = 1/2) to afford the title compound (liquid, 32.0 mg, 74%).

References

[1] For N-arylacrylamide synthesis,

1H NMR spectrum of 3a

13C NMR spectrum of 3a
1H NMR spectrum of 3b

13C NMR spectrum of 3b
1H NMR spectrum of 3c

13C NMR of spectrum of 3c
1H NMR of spectrum of 3d

13C NMR of spectrum of 3d
1H NMR of spectrum of 3e

13C NMR of spectrum of 3e
1H NMR of spectrum of 3f

13C NMR of spectrum of 3f
1H NMR of spectrum of 3g (major)

13C NMR of spectrum of 3g
1H NMR of spectrum of 3g (minor)

1H NMR of spectrum of 3g (crude)
1H NMR of spectrum of 3h

13C NMR of spectrum of 3h
1H NMR of spectrum of 3i

13C NMR of spectrum of 3i
1H NMR of spectrum of 3j

13C NMR of spectrum of 3j
1H NMR of spectrum of 3k

![H NMR spectrum of 3k](image)

13C NMR of spectrum of 3k

![C NMR spectrum of 3k](image)
1H NMR of spectrum of 3m

13C NMR of spectrum of 3m
1H NMR of spectrum of 3n

13C NMR of spectrum of 3n
1H NMR of spectrum of 3o

![1H NMR spectrum](image)

13C NMR of spectrum of 3o

![13C NMR spectrum](image)
1H NMR of spectrum of 3p

13C NMR of spectrum of 3p
1H NMR of spectrum of 5

13C NMR of spectrum of 5
1H NMR of spectrum of 6

13C NMR of spectrum of 6
1H NMR of spectrum of 7

13C NMR of spectrum of 7
1H NMR of spectrum of 8

13C NMR of spectrum of 8
1H NMR of spectrum of 9

13C NMR of spectrum of 9
1H-NMR spectrum of the reaction crude (Table 1, entry 1). (Ref: J. Q. Chen, Y. L. Wei, G. Q. Xu, Y. M. Liang and P. F. Xu *Chem. Commun.*, 2016, 52, 6455.)
1H-NMR spectrum of the reaction crude (Table 1, entry 6). (Ref: J. Y. Wang, Y. M. Su, F. Yin, Y. Bao, X. Zhang, Y. M. Xu and X. S. Wang Chem. Commun., 2014, 50, 4108.)