Enantioselective Total Synthesis of Decytospolide A and Decytospolide B
Using an Achmatowicz Reaction

Arun K. Ghosh,* Hannah M. Simpson, and Anne Veitschegger
Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana, 47907, USA

Table of Contents: Page:

General experimental conditions..S1

1H and 13C NMR Spectra of Reported Compounds..............................S2-S16

General experimental conditions
Chemicals and reagents were purchased from commercial suppliers and used without further purification. Anhydrous solvents were obtained as follows: dichloromethane and toluene from calcium hydride, diethyl ether and tetrahydrofuran from sodium/benzophenone. All other solvents were reagent grade. All moisture-sensitive reactions were either carried out in flame- or oven-dried (120 °C) glassware under an argon atmosphere. TLC analysis was conducted using glass-backed thin-layer silica gel chromatography plates (60 Å, 250 μm thickness, F254 indicator). Column chromatography was performed using silica gel, 230-400 mesh, 60 Å pore diameter. 1H and 13C NMR spectra were recorded on either Bruker ARX400, Bruker DRX-500, Bruker AV500HD. Chemical shift (δ values) are reported in parts per million and are referenced to the residual solvent signal (CDCl$_3$ 1H singlet = 7.26, 13C triplet = 77.16). Characteristic splitting patterns due to spin-spin coupling are identified as follows: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sep = septet, m = multiplet, dd = doublet of doublets, ddd = doublet of doublet of doublets, td = triplet of doublets, dq = doublet of quartets, brs = broad singlet, app = apparent. All coupling constants are measured in hertz (Hz). Optical rotations were recorded by a Perkin Elmer 341 polarimeter. LRMS and HRMS spectra were recorded at the Purdue University Department of Chemistry Mass Spectrometry Center. HPLC data was obtained on an Agilent 1290 Infinity II.
1H NMR (500 MHz, CDCl$_3$) of Acetate 12

13C NMR (125 MHz, CDCl$_3$) of Acetate 12
1H NMR (500 MHz, CDCl$_3$) of Furanyl ketone 13

13C NMR (125 MHz, CDCl$_3$) of Furanyl ketone 13
1H NMR (500 MHz, CDCl$_3$) of Alcohol 10

13C NMR (125 MHz, CDCl$_3$) of Alcohol 10
1H NMR (500 MHz, CDCl$_3$) of tetrahydropyran 8

13C NMR (125 MHz, CDCl$_3$) of tetrahydropyran 8
1H NMR (500 MHz, CDCl$_3$) of Ketone 15

13C NMR (125 MHz, CDCl$_3$) of Ketone 15
1H NMR (400 MHz, CDCl$_3$) of Ketone 18

13C NMR (100 MHz, CDCl$_3$) of Ketone 18
1H NMR (400 MHz, CDCl$_3$) of Alcohol 19

13C NMR (100 MHz, CDCl$_3$) of Alcohol 19
^{1}H NMR (400 MHz, CDCl$_3$) of Alcohol 20

^{13}C NMR (100 MHz, CDCl$_3$) of Alcohol 20
\(^1\text{H NMR (800 MHz, CDCl}_3\text{)}\) of Amide 21

\[^{13}\text{C NMR (200 MHz, CDCl}_3\text{)}\) of Amide 21
1H NMR (500 MHz, CDCl$_3$) of Decytospolide A, 6

13C NMR (125 MHz, CDCl$_3$) of Decytospolide A, 6
1H NMR (500 MHz, CDCl$_3$) of Decytospolide B, 7

13C NMR (125 MHz, CDCl$_3$) of Decytospolide B, 7
NMR (500 MHz, CDCl$_3$) of Synthetic (top) and Natural (bottom) Decytospolide A, 6
13C NMR (125 MHz, CDCl$_3$) of Synthetic (top) and Natural (bottom) Decytospolide A, 6
1H NMR (500 MHz, CDCl$_3$) of Synthetic (top) and Natural (bottom) Decytospolide B, 7
13C NMR (125 MHz, CDCl$_3$) of Synthetic (top) and Natural (bottom) Decytospolide B, 7