Supporting Information

For

Radical alkylation of \textit{para}-quinone methides with 4-substituted Hantzsch esters/nitriles via organic photoredox catalysis

Qing-Yan Wu,† Qing-Qiang Min,† Gui-Zhen Ao,*† and Feng Liu*,†,§

†Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China

§Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China.

E-mail: fliu2@suda.edu.cn, aoguizhen@suda.edu.cn

Table of Contents

1. General remarks S2
2. Typical procedure for synthesis of substituted Hantzsch esters S2
3. Typical experimental procedure S2
4. Fluorescence quenching experiments S3
5. Characterization of the substrates and products S4
6. NMR Spectra for the substrates and products S19
1. General remarks

1H NMR spectra were recorded on 400 or 600 MHz (100 or 150 MHz for 13C NMR) agilent NMR spectrometer with CDCl$_3$ as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts were reported in parts per million (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to the CDCl$_3$ at 7.26 ppm (for 1H NMR) or 77.16 ppm (for 13C NMR). HRMS was recorded on a GCT PremierTM (CI) Mass Spectrometer. Infrared (FT-IR) spectra were recorded on a Varian 1000FT-IR, ν_{max} in cm$^{-1}$. Melting points were measured using SGW, X-4B and values are uncorrected. All commercially available reagents and solvents were used as received unless otherwise specified. The substrates we are readily prepared according to known methods (Org. Lett. 2015, 17, 3390–3393; J. Am. Chem. Soc. 2016, 138, 12312–12315).

2. Typical procedure for synthesis of substituted Hantzsch esters

To a flask charged with ethyl acetoacetate (2.6 mL, 20 mmol), the cyclohexylformaldehyde (10 mmol) and ethanol (20 mL) was added ammonia aqueous solution (1.5 mL, 25%, 20 mmol). The mixture was heated at 70 ºC for about 8 hours. The reaction was allowed to cool to room temperature. The solution was concentrated under reduced pressure. A mixture of water and CH$_2$Cl$_2$ were added to the concentrated residue and the layers were separated. The aqueous layer was extracted with CH$_2$Cl$_2$ for 3 times. The combined organic layers were washed with brine, dried (MgSO$_4$), and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by chromatography on silica gel to obtain 2a as a light yellow solid (3.56 g, 53% yield).

3. Typical experimental procedure
To a suspension of 1a (58.8 mg, 0.2 mmol), 2a (134.1 mg, 0.4 mmol) and N-methyl-9-mesityl acridinium perchlorate (4.1 mg, 0.01 mmol) in acetone (without dehydration, 2 mL) was added KH₂PO₄ (54.4 mg, 0.4 mmol) at rt. The resulting mixture was stirred upon 22W blue LEDs irradiation under argon balloon. After the reaction was finished, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give 3a as a white solid (57.5 mg, 76% yield).

Reaction setup:

![Figure S1](image_url). Photographs of the 22w blue light strip and reaction vessel.

4. **Fluorescence quenching experiments**

Emission intensities were recorded using LS55 Luminescence Spectrometer for all experiments. All Mes-Acr⁺ solutions were excited at 450 nm and the emission intensity was collected at 490-570 nm. In a typical experiment, the DMSO solution of Mes-Acr⁺ (0.02 mM) was added the appropriate amount of quencher in a screw-top 1.0 cm quartz cuvette. After degassing with nitrogen for 10 min, the emission spectra of the samples were collected.
5. Characterization of the substrates and products

\[\text{4-Benzylidene-2,6-di-tert-butycyclohexa-2,5-dien-1-one (1a):} \]
\[^1\text{H NMR (600 MHz, CDCl}_3\text{)} \delta 7.54 (d, J = 2.2 \text{ Hz, 1H}), 7.48 - 7.43 (m, 4H), 7.41 - 7.37 (m, 1H), 7.19 (s, 1H), 7.03 (d, J = 2.3 \text{ Hz, 1H}), 1.35 (s, 9H), 1.32 (s, 9H); ^{13}\text{C NMR (150 MHz, CDCl}_3\text{)} \delta 186.6, 149.5, 147.9, 142.6, 136.0, 135.2, 132.1, 130.4, 129.2, 128.9, 127.9, 35.6, 35.1, 29.67, 29.65. \]

\[\text{2,6-Di-tert-butyl-4-(4-chlorobenzylidene)cyclohexa-2,5-dien-1-one (1b):} \]
\[^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.46 - 7.40 (m, 3H), 7.38 (d, J = 8.3 \text{ Hz, 2H}), 7.11 (s, 1H), 6.99 (s, 1H), 1.33 (s, 9H), 1.30 (s, 9H); ^{13}\text{C NMR (150 MHz, CDCl}_3\text{)} \delta 186.7, 149.9, 148.2, 140.8, 135.3, 135.0, 134.5, 132.5, 131.6, 129.2, 127.4, 35.6, 35.2, 29.68, 29.65. \]

\[\text{4-(4-Bromobenzylidene)-2,6-di-tert-butycyclohexa-2,5-dien-1-one (1c):} \]
\[^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.56 (d, J = 8.0 \text{ Hz, 2H}), 7.43 (s, 1H), 7.30 (d, J = 8.0 \text{ Hz, 2H}), 7.07 (s, 1H), 6.98 (s, 1H), 1.32 (s, 9H), 1.29 (s, 9H); ^{13}\text{C NMR (150 MHz, CDCl}_3\text{)} \delta 186.6, 149.8, 148.2, 140.7, 134.9, 134.9, 132.5, 132.1, 131.8, 127.3, 123.6, 35.6, 35.1, 29.7, 29.6. \]
2,6-Di-tert-butyl-4-(4-methylbenzylidene)cyclohexa-2,5-dien-1-one (1d): 1H NMR (400 MHz, CDCl$_3$) δ 7.56 (s, 1H), 7.37 (d, J = 7.7 Hz, 2H), 7.25 (d, J = 7.6 Hz, 2H), 7.16 (s, 1H), 7.01 (s, 1H), 2.40 (s, 3H), 1.34 (s, 9H), 1.31 (s, 9H); 13C NMR (150 MHz, CDCl$_3$) δ 186.6, 149.2, 147.6, 143.0, 139.7, 135.4, 133.3, 131.5, 130.5, 129.7, 128.0, 35.6, 35.1, 29.69, 29.65, 21.6.

5-((3,5-Di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl)benzonitrile (1e): 1H NMR (400 MHz, CDCl$_3$) δ 7.73 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.35 (s, 1H), 7.11 (s, 1H), 7.00 (s, 1H), 1.32 (s, 9H), 1.28 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 186.5, 150.6, 149.0, 140.5, 139.0, 134.6, 134.1, 132.5, 130.7, 126.8, 118.6, 112.2, 35.7, 35.3, 29.62, 29.59.

Methyl 4-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl)benzoate (1f): 1H NMR (400 MHz, CDCl$_3$) δ 8.11 (d, J = 7.6 Hz, 2H), 7.51 (d, J = 7.6 Hz, 2H), 7.45 (s, 1H), 7.17 (s, 1H), 7.01 (s, 1H), 3.95 (s, 3H), 1.33 (s, 9H), 1.29 (s, 9H); 13C NMR (150 MHz, CDCl$_3$) δ 186.7, 166.7, 150.1, 148.6, 140.6, 140.5, 134.9, 133.5, 130.3, 130.0, 127.5, 52.5, 35.7, 35.2, 29.67, 29.65.
2,6-Di-tert-butyl-4-(2-chlorobenzylidene)cyclohexa-2,5-dien-1-one (1g): 1H NMR (400 MHz, CDCl$_3$) δ 7.51 – 7.45 (m, 1H), 7.44 – 7.38 (m, 1H), 7.38 – 7.32 (m, 2H), 7.32 – 7.28 (m, 2H), 7.07 (s, 1H), 1.34 (s, 9H), 1.27 (s, 9H); 13C NMR (151 MHz, CDCl$_3$) δ 186.7, 149.8, 148.4, 138.7, 135.0, 134.8, 134.2, 133.0, 132.3, 130.1, 127.8, 126.8, 35.6, 35.2, 29.6.

4-(2-Bromobenzylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (1h): 1H NMR (400 MHz, CDCl$_3$) δ 7.69 (d, $J = 7.9$ Hz, 1H), 7.44 – 7.36 (m, 2H), 7.31 – 7.21 (m, 3H), 7.08 (s, 1H), 1.35 (s, 9H), 1.27 (s, 9H); 13C NMR (150 MHz, CDCl$_3$) δ 186.7, 149.8, 148.4, 140.9, 136.0, 134.7, 133.4, 132.7, 132.4, 130.4, 127.8, 127.4, 125.2, 35.6, 35.3, 29.6.

2,6-Di-tert-butyl-4-(3-chlorobenzylidene)cyclohexa-2,5-dien-1-one (1i): 1H NMR (400 MHz, CDCl$_3$) δ 7.43 (d, $J = 3.4$ Hz, 2H), 7.39 – 7.28 (m, 3H), 7.08 (s, 1H), 6.99 (s, 1H), 1.33 (s, 9H), 1.30 (s, 9H); 13C NMR (150 MHz, CDCl$_3$) δ 186.6, 150.0, 148.4, 140.2, 137.7, 134.9, 134.8, 133.0, 130.2, 130.1, 129.0, 128.4, 127.4, 35.6, 35.2, 29.63.
2,6-Di-tert-butyl-4-(3-methoxybenzylidene)cyclohexa-2,5-dien-1-one (1j): 1H NMR (400 MHz, CDCl$_3$) δ 7.56 (s, 1H), 7.36 (t, $J = 7.8$ Hz, 1H), 7.16 (s, 1H), 7.05 (d, $J = 7.5$ Hz, 1H), 7.01 (s, 1H), 6.99 (s, 1H), 6.95 (d, $J = 8.2$ Hz, 1H), 3.85 (s, 3H), 1.34 (s, 9H), 1.31 (s, 9H); 13C NMR (150 MHz, CDCl$_3$) δ 186.7, 159.9, 149.5, 148.0, 142.5, 137.3, 135.2, 132.2, 129.9, 128.0, 123.1, 115.4, 115.3, 55.4, 35.6, 35.1, 29.71, 29.65.

4-Benzylidene-2,6-dimethylcyclohexa-2,5-dien-1-one (1k): 1H NMR (600 MHz, CDCl$_3$) δ 7.48 (s, 1H), 7.42 – 7.39 (m, 4H), 7.38 – 7.34 (m, 1H), 7.09 (s, 1H), 6.98 (s, 1H), 2.03 (s, 6H); 13C NMR (150 MHz, CDCl$_3$) δ 186.9, 142.6, 138.7, 137.2, 135.3, 131.4, 131.1, 130.2, 129.1, 128.5, 16.7, 16.0.

Diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (2a): 1H NMR (400 MHz, CDCl$_3$) δ 5.97 (s, 1H), 4.26 – 4.04 (m, 4H), 3.89 (d, $J = 5.6$ Hz, 1H), 2.27 (s, 6H), 1.68 – 1.58 (m, 2H), 1.52 (d, $J = 11.8$ Hz, 3H), 1.27 (t, $J = 7.1$ Hz, 6H), 1.21 – 1.13 (m, 1H), 1.12 – 0.99 (m, 3H), 0.96 – 0.83 (m, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 168.8, 144.5, 102.1, 59.7, 45.9, 38.6, 29.0, 26.9, 26.8, 19.6, 14.5.
Diethyl 4-isopropyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (2b): 1H NMR (400 MHz, CDCl$_3$) δ 5.89 (s, 1H), 4.24 – 4.06 (m, 4H), 3.89 (d, $J = 5.2$ Hz, 1H), 2.28 (s, 6H), 1.61 – 1.51 (m, 1H), 1.27 (t, $J = 7.0$ Hz, 6H), 0.72 (d, $J = 6.8$ Hz, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 168.9, 144.8, 101.7, 59.6, 38.9, 35.6, 19.4, 18.6, 14.5.

![Chemical structure of 2b](image)

4-(Tert-butyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarbonitrile (2c): 1H NMR (400 MHz, CDCl$_3$) δ 6.17 (s, 1H), 2.89 (s, 1H), 2.19 (s, 6H), 0.96 (s, 9H); 13C NMR (150 MHz, CDCl$_3$) δ 148.9, 120.8, 81.3, 46.5, 41.0, 26.2, 18.5.

![Chemical structure of 2c](image)

Diethyl 4-benzyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (2d): 1H NMR (400 MHz, CDCl$_3$) δ 7.18 – 7.08 (m, 3H), 7.01 (d, $J = 6.8$ Hz, 2H), 5.86 (s, 1H), 4.18 (t, $J = 5.3$ Hz, 1H), 4.09 – 3.94 (m, 4H), 2.56 (d, $J = 5.5$ Hz, 2H), 2.16 (s, 6H), 1.21 (t, $J = 7.1$ Hz, 6H); 13C NMR (150 MHz, CDCl$_3$) δ 168.0, 145.8, 139.3, 130.1, 127.3, 125.6, 101.7, 59.6, 42.4, 35.5, 19.1, 14.4.

![Chemical structure of 2d](image)

Diethyl 4-(4-chlorobenzyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (2e): 1H NMR (400 MHz, CDCl$_3$) δ 7.09 (d, $J = 7.9$ Hz, 2H), 6.90 (d, $J = 7.9$ Hz, 2H), 5.66 (s, 1H), 4.13 (t, $J = 5.0$ Hz, 1H), 4.08 – 3.98 (m, 4H), 2.50 (d, $J = 5.1$ Hz, 2H), 2.12 (s, 6H), 1.20 (t, $J = 7.0$ Hz, 6H); 13C NMR (150 MHz, CDCl$_3$) δ 167.9, 145.9, 137.9, 131.6, 131.4, 127.3, 101.4, 59.8, 41.6, 35.4, 19.2, 14.4.
Diethyl 4-(4-bromobenzyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (2f): 1H NMR (400 MHz, CDCl$_3$) δ 7.29 (d, J = 8.1 Hz, 2H), 6.89 (d, J = 8.1 Hz, 2H), 5.59 (s, 1H), 4.17 (t, J = 5.2 Hz, 1H), 4.15 – 4.00 (m, 4H), 2.53 (d, J = 5.2 Hz, 2H), 2.17 (s, 6H), 1.25 (t, J = 7.1 Hz, 6H); 13C NMR (150 MHz, CDCl$_3$) δ 167.8, 145.8, 138.4, 131.9, 130.3, 119.7, 101.5, 59.8, 41.7, 35.4, 19.3, 14.5.

Diethyl 2,6-dimethyl-4-(thiophen-2-ylmethyl)-1,4-dihydropyridine-3,5-dicarboxylate (2g): 1H NMR (400 MHz, CDCl$_3$) δ 7.08 (d, J = 4.9 Hz, 1H), 6.86 – 6.82 (m, 1H), 6.62 (d, J = 2.0 Hz, 1H), 5.42 (s, 1H), 4.19 (t, J = 4.8 Hz, 1H), 4.11 (q, J = 7.0 Hz, 4H), 2.81 (d, J = 5.0 Hz, 2H), 2.20 (s, 6H), 1.26 (t, J = 7.0 Hz, 6H); 13C NMR (150 MHz, CDCl$_3$) δ 167.8, 145.8, 141.5, 126.33, 126.27, 123.9, 101.6, 59.8, 36.2, 35.8, 19.6, 14.5.

Diethyl 2,6-dimethyl-4-(1-phenylethyl)-1,4-dihydropyridine-3,5-dicarboxylate (2h): 1H NMR (400 MHz, CDCl$_3$) δ 7.20 – 7.14 (m, 2H), 7.13 – 7.05 (m, 3H), 5.92 (s, 1H), 4.26 (d, J = 5.0 Hz, 1H), 4.06 – 3.94 (m, 3H), 3.90 – 3.80 (m, 1H), 2.78 – 2.68 (m, 1H), 2.19 (s, 6H), 1.29 – 1.22 (m, 3H), 1.20 – 1.12 (m, 6H); 13C NMR (150 MHz, CDCl$_3$) δ 168.5, 168.5, 145.6, 145.3, 144.2, 128.5, 127.2, 125.8, 100.8, 100.7, 59.59, 59.56, 46.0, 40.1, 19.1, 19.0, 15.4, 14.4, 14.3.
4-Benzhydryl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarbonitrile (2i): 1H NMR (600 MHz, CDCl$_3$) δ 7.35 – 7.32 (m, 4H), 7.32 – 7.27 (m, 5H), 7.26 – 7.22 (m, 2H), 3.99 (d, $J = 7.9$ Hz, 1H), 3.92 (d, $J = 7.9$ Hz, 1H), 1.89 (s, 6H); 13C NMR (150 MHz, CDCl$_3$) δ 148.7, 139.4, 129.2, 128.4, 127.1, 118.9, 81.7, 58.4, 40.7, 18.0.

2,6-Dimethyl-4-(2-phenylpropan-2-yl)-1,4-dihydropyridine-3,5-dicarbonitrile (2j): 1H NMR (400 MHz, CDCl$_3$) δ 7.34 – 7.20 (m, 6H), 3.29 (s, 1H), 2.00 (s, 6H), 1.38 (s, 6H); 13C NMR (150 MHz, CDCl$_3$) δ 149.6, 144.5, 127.9, 126.9, 126.6, 119.8, 79.9, 47.5, 46.6, 24.3, 18.0.

4-(1-Benzycyclohexyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarbonitrile (2k): 1H NMR (400 MHz, CDCl$_3$) δ 7.44 (s, 1H), 7.26 – 7.18 (m, 3H), 7.06 (d, $J = 6.9$ Hz, 2H), 3.79 (s, 1H), 2.37 (s, 2H), 2.21 (s, 6H), 2.10 – 2.05 (m, 2H), 1.81 – 1.73 (m, 2H), 1.66 – 1.52 (m, 4H), 1.13 – 1.02 (m, 2H).

2,6-Di-tert-butyl-4-(cyclohexyl(phenyl)methyl)phenol (3a): White solid; m.p. 130-134 °C; 76% yield (58 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.30 – 7.19 (m, 4H),
7.15 – 7.07 (m, 1H), 7.03 (s, 2H), 4.95 (s, 1H), 3.35 (d, J = 10.6 Hz, 1H), 2.07 – 1.93 (m, 1H), 1.72 – 1.57 (m, 4H), 1.40 (s, 18H), 1.29 – 1.07 (m, 4H), 0.90 – 0.73 (m, 2H);

\(^{13}\)C NMR (150 MHz, CDCl3) δ 151.9, 145.5, 135.5, 153.0, 128.4, 128.3, 125.7, 124.6, 59.7, 42.0, 34.5, 32.4, 32.3, 30.6, 26.8, 26.6, 26.5; FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3619, 2921, 2849, 1433, 751; HRMS (CI) calcd C\(_{27}H_{38}O\) [M]+: 378.2923, found: 378.2928.

\begin{image}
\centering
\includegraphics[width=0.2\textwidth]{image1}
\end{image}

2,6-Di-tert-butyl-4-((4-chlorophenyl)(cyclohexyl)methyl)phenol (3b): White solid; m.p. 130-132 ℃; 74% yield (61 mg); \(^1\)H NMR (400 MHz, CDCl3) δ 7.25 – 7.15 (m, 4H), 7.00 (s, 2H), 5.00 (s, 1H), 3.35 (d, J = 10.7 Hz, 1H), 2.03 – 1.91 (m, 1H), 1.73 – 1.58 (m, 4H), 1.24 – 1.10 (m, 4H), 1.41 (s, 18H), 0.89 – 0.75 (m, 2H); \(^{13}\)C NMR (150 MHz, CDCl3) δ 152.0, 144.0, 135.7, 134.4, 131.4, 129.6, 128.5, 124.5, 58.9, 41.9, 34.5, 32.3, 32.2, 30.5, 26.7, 26.53, 26.48; FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3631, 2917, 2847, 1435, 768; HRMS (CI) calcd C\(_{27}H_{37}ClO\) [M]+: 412.2533, found: 412.2530.

\begin{image}
\centering
\includegraphics[width=0.2\textwidth]{image2}
\end{image}

4-((4-Bromophenyl)(cyclohexyl)methyl)-2,6-di-tert-butylphenol (3c): White solid; m.p. 113-115 ℃; 80% yield (73 mg); \(^1\)H NMR (400 MHz, CDCl3) δ 7.36 (d, J = 7.9 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.99 (s, 2H), 4.99 (s, 1H), 3.33 (d, J = 10.7 Hz, 1H), 2.04 – 1.89 (m, 1H), 1.72 – 1.60 (m, 4H), 1.40 (s, 18H), 1.24 – 1.10 (m, 4H), 0.88 – 0.74 (m, 2H); \(^{13}\)C NMR (150 MHz, CDCl3) δ 152.0, 144.6, 135.7, 134.3, 131.5, 130.0, 124.4, 119.4, 59.0, 41.8, 34.5, 32.3, 32.2, 30.5, 26.7, 26.51, 26.47; FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3640, 2920, 2851, 1434, 833; HRMS (CI) calcd C\(_{27}H_{37}BrO\) [M]+: 456.2028, found: 456.2027.

\begin{image}
\centering
\includegraphics[width=0.2\textwidth]{image3}
\end{image}
2,6-Di-tert-butyl-4-(cyclohexyl(p-tolyl)methyl)phenol (3d): White solid; m.p. 148-151 °C; 66% yield (52 mg); 1H NMR (400 MHz, CDCl₃) δ 7.17 (d, $J = 7.7$ Hz, 2H), 7.07 (d, $J = 7.6$ Hz, 2H), 7.04 (s, 2H), 4.95 (s, 1H), 3.32 (d, $J = 10.7$ Hz, 1H), 2.29 (s, 3H), 2.09 – 1.90 (m, 1H), 1.71 – 1.60 (m, 4H), 1.61 (s, 1H), 1.28 – 1.08 (m, 4H), 0.88 – 0.75 (m, 2H); 13C NMR (150 MHz, CDCl₃) δ 151.8, 142.6, 135.5, 135.1, 135.1, 129.1, 128.1, 124.5, 59.3, 42.0, 34.4, 32.4, 32.3, 30.6, 26.8, 26.61, 26.56, 21.1; FT-IR (thin film, KBr): ν (cm$^{-1}$) 3628, 2917, 2850, 1434, 770; HRMS (CI) calcd C$_{28}$H$_{40}$O [M]$^+$: 392.3079, found: 392.3078.

![Image of 2,6-Di-tert-butyl-4-(cyclohexyl(p-tolyl)methyl)phenol (3d)]

4-(Cyclohexyl(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)benzonitrile (3e): White solid; m.p. 106-108 °C; 53% yield (43 mg); 70% yield (66 mg); 1H NMR (400 MHz, CDCl₃) δ 7.54 (d, $J = 7.4$ Hz, 2H), 7.37 (d, $J = 7.4$ Hz, 2H), 6.98 (s, 2H), 5.04 (s, 1H), 3.44 (d, $J = 10.6$ Hz, 1H), 2.09 – 1.93 (m, 1H), 1.73 – 1.57 (m, 4H), 1.41 (s, 1H), 1.29 – 1.10 (m, 4H), 0.92 – 0.76 (m, 2H); 13C NMR (150 MHz, CDCl₃) δ 152.3, 151.2, 136.0, 133.4, 132.4, 129.0, 124.5, 119.3, 109.6, 59.6, 41.6, 34.5, 32.2, 32.0, 30.5, 26.6, 26.42, 26.37; FT-IR (thin film, KBr): ν (cm$^{-1}$) 3628, 2927, 2229, 1434, 749; HRMS (CI) calcd C$_{28}$H$_{38}$NO [M + H]$^+$: 404.2953, found: 404.2958.

![Image of 4-(Cyclohexyl(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)benzonitrile (3e)]

Methyl 4-(cyclohexyl(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)benzoate (3f): White solid; m.p. 165-168 °C; 49% yield (43 mg); 1H NMR (400 MHz, CDCl₃) δ 7.93 (d, $J = 8.0$ Hz, 2H), 7.34 (d, $J = 8.0$ Hz, 2H), 7.02 (s, 2H), 5.00 (s, 1H), 3.88 (s, 3H), 3.44 (d, $J = 10.7$ Hz, 1H), 2.09 – 1.98 (m, 1H), 1.72 – 1.58 (m, 4H), 1.40 (s, 1H), 1.25 – 1.10 (m, 4H), 0.90 – 0.80 (m, 2H); 13C NMR (150 MHz, CDCl₃) δ 167.3, 152.1, 151.1, 135.7, 134.0, 129.9, 128.3, 127.7, 124.6, 59.6, 52.1, 41.8, 34.5, 32.3, 32.1, 30.5, 26.7, 26.5, 26.4; FT-IR (thin film, KBr): ν (cm$^{-1}$) 3626, 2923, 1716, 1260, 711; HRMS (CI) calcd C$_{29}$H$_{41}$O$_3$ [M + H]$^+$: 437.3056, found: 437.3060.

![Image of Methyl 4-(cyclohexyl(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)benzoate (3f)]
2,6-Di-tert-butyl-4-((2-chlorophenyl)(cyclohexyl)methyl)phenol (3g): White solid; m.p. 175-178 °C; 69% yield (57 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.43 (d, $J = 7.6$ Hz, 1H), 7.30 (d, $J = 7.9$ Hz, 1H), 7.21 (t, $J = 7.4$ Hz, 1H), 7.10 (s, 2H), 7.05 (t, $J = 7.4$ Hz, 1H), 4.99 (s, 1H), 4.10 (d, $J = 11.1$ Hz, 1H), 2.11 – 2.00 (m, 1H), 1.71 – 1.59 (m, 4H), 1.41 (s, 18H), 1.27 – 1.13 (m, 4H), 0.95 – 0.85 (m, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 152.0, 142.8, 135.5, 134.6, 133.6, 129.7, 128.4, 127.0, 126.7, 124.9, 53.3, 41.8, 34.5, 32.0, 31.6, 30.5, 26.7, 26.5; FT-IR (thin film, KBr): ν (cm$^{-1}$) 3640, 2920, 2851, 1435, 746; HRMS (CI) calcd C$_{27}$H$_{37}$ClO $[M+]$: 412.2533, found: 412.2518.

4-((2-Bromophenyl)(cyclohexyl)methyl)-2,6-di-tert-butylphenol (3h): White solid; m.p. 182-184 °C; 84% yield (77 mg); 1H NMR (600 MHz, CDCl$_3$) δ 7.49 (d, $J = 8.0$ Hz, 1H), 7.41 (d, $J = 9.0$ Hz, 1H), 7.28 – 7.21 (m, 1H), 7.13 (s, 2H), 6.96 (t, $J = 7.6$ Hz, 1H), 4.97 (s, 1H), 4.09 (d, $J = 11.1$ Hz, 1H), 2.09 – 1.99 (m, 1H), 1.72 – 1.60 (m, 4H), 1.40 (s, 18H), 1.24 – 1.13 (m, 4H), 0.96 – 0.85 (m, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 152.0, 144.5, 135.5, 133.6, 133.0, 128.5, 127.7, 127.1, 126.0, 124.9, 56.1, 42.1, 34.5, 32.0, 31.6, 30.6, 26.7, 26.5; FT-IR (thin film, KBr): ν (cm$^{-1}$) 3638, 2919, 2850, 1435, 745; HRMS (Cl) calcd C$_{27}$H$_{37}$BrO $[M+]$: 456.2028, found: 456.2029.

2,6-Di-tert-butyl-4-((3-chlorophenyl)(cyclohexyl)methyl)phenol (3i): White solid; m.p. 158-160 °C; 61% yield (50 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.25 – 7.22 (m, 1H), 7.19 – 7.14 (m, 2H), 7.12 – 7.07 (m, 1H), 7.00 (s, 2H), 5.00 (s, 1H), 3.33 (d, $J = 10.8$ Hz, 1H), 2.03 – 1.91 (m, 1H), 1.73 – 1.59 (m, 4H), 1.41 (s, 18H), 1.29 – 1.09 (m, 4H), 0.89 – 0.73 (m, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 152.1, 147.6, 135.7, 134.2,
134.1, 129.7, 128.5, 126.3, 125.9, 124.5, 59.4, 41.9, 34.5, 32.3, 32.1, 30.5, 26.7, 26.50, 26.46; FT-IR (thin film, KBr): ν (cm⁻¹) 3629, 2918, 2846, 1436, 693; HRMS (CI) calcd C₂₇H₃₇ClO [M]+: 412.2533, found: 412.2538.

2,6-Di-tert-butyl-4-(cyclohexyl(3-methoxyphenyl)methyl)phenol (3j): White solid; m.p. 170-173 °C; 76% yield (62 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, J = 7.8 Hz, 1H), 7.06 (s, 2H), 6.90 (d, J = 7.5 Hz, 1H), 6.84 (s, 1H), 6.69 (d, J = 6.9 Hz, 1H), 4.98 (s, 1H), 3.79 (s, 3H), 3.33 (d, J = 10.8 Hz, 1H), 2.06 – 1.95 (m, 1H), 1.74 – 1.62 (m, 4H), 1.42 (s, 18H), 1.29 – 1.14 (m, 4H), 0.91 – 0.78 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 159.6, 151.9, 147.2, 135.5, 134.8, 129.3, 124.6, 120.7, 114.4, 110.7, 59.7, 55.2, 42.0, 34.5, 32.4, 32.2, 30.6, 26.8, 26.6, 26.5; FT-IR (thin film, KBr): ν (cm⁻¹) 3614, 2917, 1433, 1234, 703; HRMS (CI) calcd C₂₈H₄₀O₂ [M]+: 408.3028, found: 408.3020.

4-(cyclohexyl(phenyl)methyl)-2,6-dimethylphenol (3k): Colorless oil; 29% yield (17 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (m, 4H), 7.12 (m, 1H), 6.86 (s, 2H), 4.42 (s, 1H), 3.32 (d, J = 10.8 Hz, 1H), 2.19 (s, 6H), 2.09 – 1.96 (m, 1H), 1.72 – 1.60 (m, 4H), 1.30 – 1.10 (m, 4H), 0.92 – 0.78 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 150.4, 145.3, 136.3, 128.5, 128.2, 128.1, 125.8, 122.9, 59.0, 41.4, 32.3, 32.3, 26.7, 26.5, 16.3.
4-(1-(4-Bromophenyl)-2-methylpropyl)-2,6-di-tert-butylphenol (4a): White solid; m.p. 102-107 °C; 52% yield (43 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.38 (d, \(J = 7.7\) Hz, 2H), 7.17 (d, \(J = 7.7\) Hz, 2H), 7.02 (s, 2H), 5.01 (s, 1H), 3.27 (d, \(J = 10.6\) Hz, 1H), 2.41 – 2.33 (m, 1H), 1.42 (s, 18H), 0.89 – 0.80 (m, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 152.1, 145.0, 135.7, 134.8, 131.5, 129.9, 124.4, 119.5, 60.3, 34.5, 32.4, 30.5, 22.0; FT-IR thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3630, 2921, 2866, 1434, 787; HRMS (CI) calcd C\(_{24}\)H\(_{33}\)BrO \([M]^+\): 416.1715, found: 416.1707.

\[\text{\includegraphics[width=0.2\textwidth]{image}}\]

4-(1-(4-Bromophenyl)-2,2-dimethylpropyl)-2,6-di-tert-butylphenol (4b): White solid; m.p. 138-139 °C; 70% yield (60 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.41 (d, \(J = 8.2\) Hz, 2H), 7.33 (d, \(J = 8.3\) Hz, 2H), 7.17 (s, 2H), 5.05 (s, 1H), 3.58 (s, 1H), 1.45 (s, 18H), 0.99 (s, 9H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 152.2, 143.2, 135.1, 133.0, 131.6, 131.1, 126.3, 119.8, 63.8, 35.2, 34.4, 30.5, 29.3; FT-IR thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3629, 2921, 2868, 1236, 778; HRMS (CI) calcd C\(_{25}\)H\(_{35}\)BrO \([M]^+\): 430.1871, found: 430.1863.

\[\text{\includegraphics[width=0.2\textwidth]{image}}\]

4-(1-(4-Bromophenyl)-2-phenylethyl)-2,6-di-tert-butylphenol (4c): White solid; m.p. 108-110 °C; 46% yield (43 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.35 (d, \(J = 8.0\) Hz, 2H), 7.21 – 7.11 (m, 3H), 7.06 (d, \(J = 8.0\) Hz, 2H), 6.95 (d, \(J = 7.0\) Hz, 2H), 6.92 (s, 2H), 5.06 (s, 1H), 4.08 (t, \(J = 7.6\) Hz, 1H), 3.26 (d, \(J = 7.6\) Hz, 2H), 1.38 (s, 18H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 152.3, 143.9, 140.4, 135.7, 134.7, 131.4, 130.0, 129.3, 128.2, 126.0, 124.5, 119.8, 52.8, 42.8, 34.5, 30.4; FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3624, 2919, 1766, 1432, 698; HRMS (CI) calcd C\(_{28}\)H\(_{33}\)BrO \([M]^+\): 464.1715, found: 464.1698.

\[\text{\includegraphics[width=0.2\textwidth]{image}}\]
4-(1-(4-Bromophenyl)-2-(4-chlorophenyl)ethyl)-2,6-di-tert-butylphenol (4d): White solid; m.p. 94-98 °C; 51% yield (51 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.36 (d, \(J = 8.2\) Hz, 2H), 7.13 (d, \(J = 8.1\) Hz, 2H), 7.04 (d, \(J = 8.2\) Hz, 2H), 6.90 (s, 2H), 6.87 (d, \(J = 8.1\) Hz, 2H), 5.07 (s, 1H), 4.02 (t, \(J = 7.8\) Hz, 1H), 3.22 (d, \(J = 7.8\) Hz, 2H), 1.38 (s, 18H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 152.4, 143.6, 138.9, 135.8, 134.3, 131.8, 131.5, 130.6, 130.0, 128.3, 124.4, 120.0, 52.7, 42.1, 34.5, 30.4; FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3635, 2956, 1435, 1010, 809; HRMS (CI) calcd C\(_{28}\)H\(_{33}\)Cl\(_7\)BrO \([M + H]^+\): 499.1403, found: 499.1379.

4-(1,2-Bis(4-bromophenyl)ethyl)-2,6-di-tert-butylphenol (4e): White solid; m.p. 77-80 °C; 63% yield (68 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.36 (d, \(J = 8.2\) Hz, 2H), 7.29 (d, \(J = 8.1\) Hz, 2H), 7.04 (d, \(J = 8.2\) Hz, 2H), 6.90 (s, 2H), 6.81 (d, \(J = 8.1\) Hz, 2H), 5.07 (s, 1H), 4.03 (t, \(J = 7.8\) Hz, 1H), 3.21 (d, \(J = 7.8\) Hz, 2H), 1.38 (s, 18H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 152.4, 143.5, 139.4, 135.8, 134.2, 131.5, 131.2, 131.0, 129.9, 124.4, 120.0, 119.9, 52.7, 42.2, 34.5, 30.4; FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3633, 2956, 2919, 1435, 1010; HRMS (CI) calcd C\(_{28}\)H\(_{33}\)Br\(_2\)O \([M + H]^+\): 543.0898, found: 543.0925.

4-(1-(4-Bromophenyl)-2-(thiophen-2-yl)ethyl)-2,6-di-tert-butylphenol (4f): White solid; m.p. 84-86 °C; 51% yield (48 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.39 (d, \(J = 8.2\) Hz, 2H), 7.13 (d, \(J = 8.2\) Hz, 2H), 7.05 (d, \(J = 5.0\) Hz, 1H), 6.99 (s, 2H), 6.84 – 6.79 (m, 1H), 6.59 (d, \(J = 2.3\) Hz, 1H), 5.09 (s, 1H), 4.13 (t, \(J = 7.7\) Hz, 1H), 3.50 (d, \(J = 6.9\) Hz, 2H), 1.41 (s, 18H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 152.5, 143.6, 142.9,
135.9, 134.2, 131.5, 129.9, 126.6, 125.6, 124.4, 123.6, 120.1, 53.0, 36.9, 34.5, 30.5; FT-IR (thin film, KBr): ν (cm⁻¹) 3636, 2956, 1434, 1010, 717; HRMS (CI) calcd C₂₆H₃₁⁷⁹BrOS [M⁺]: 470.1279, found: 470.1270.

4-(1-(4-Bromophenyl)-2-phenylpropyl)-2,6-di-tert-butylphenol (4g): White solid; two isomers (1.7 : 1); m.p. 100-102 °C; 50% yield (48 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.1 Hz, 0.74H), 7.29 (d, J = 8.2 Hz, 0.74H), 7.22 – 7.04 (m, 6.75H), 7.02 – 6.97 (m, 2.04H), 6.72 (s, 0.74H), 5.06 (s, 0.63H), 4.87 (s, 0.37H), 3.92 (d, J = 11.2 Hz, 0.63H), 3.85 (d, J = 11.0 Hz, 0.37H), 3.49 – 3.34 (m, 1H), 1.45 (s, 11.34H), 1.27 (s, 6.66H), 1.21 (d, J = 6.9 Hz, 1.11H), 1.18 (d, J = 6.8 Hz, 1.89H); ¹³C NMR (150 MHz, CDCl₃) δ 152.3/151.7, 146.0/145.9, 143.9/143.6, 135.9/135.1, 134.0/133.6, 131.6/131.1, 130.3/130.0, 128.3/128.0, 127.9/127.8, 126.0/125.9, 124.9/124.7, 119.9/119.3, 59.4/58.9, 45.4/44.9, 34.5/34.3, 30.6/30.4, 22.1/21.3; FT-IR (thin film, KBr): ν (cm⁻¹) 3637, 2957, 1435, 1009, 698; HRMS (CI) calcd C₂₉H₃₆⁷⁹BrO [M + H]⁺: 479.1950, found: 479.1953.

4-(1-(4-Bromophenyl)-2,2-diphenylethyl)-2,6-di-tert-butylphenol (4h): White solid; m.p. 138-141 °C; 42% yield (45 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 3.6 Hz, 2H), 7.20 (d, J = 7.7 Hz, 2H), 7.14 (t, J = 7.6 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 7.07 – 7.02 (m, 3H), 7.01 – 6.95 (m, 3H), 6.70 (s, 2H), 4.89 (s, 1H), 4.59 (d, J = 12.0 Hz, 1H), 4.52 (d, J = 12.0 Hz, 1H), 1.25 (s, 18H); ¹³C NMR (151 MHz, CDCl₃) δ 151.8, 143.9, 143.1, 143.0, 135.3, 133.3, 131.3, 130.5, 128.7, 128.6, 128.4, 128.1, 126.1, 125.9, 125.3, 119.5, 57.4, 55.9, 34.3, 30.3; FT-IR (thin film, KBr): ν (cm⁻¹) 3359, 2920, 2851, 1470, 743; HRMS (CI) calcd C₃₄H₃₈⁷⁹BrO [M + H]⁺: 541.2106, found: 541.2116.
4-(1-(4-Bromophenyl)-2-methyl-2-phenylpropyl)-2,6-di-tert-butylphenol (4i):
White solid; m.p. 69-72 °C; 78% yield (77 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.33 (d, \(J = 8.1\) Hz, 2H), 7.25 – 7.19 (m, 3H), 7.08 – 7.01 (m, 4H), 6.83 (s, 2H), 5.03 (s, 1H), 3.97 (s, 1H), 1.39 (s, 3H), 1.38 (s, 3H), 1.36 (s, 18H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 152.3, 147.0, 142.2, 134.7, 132.0, 131.7, 130.8, 128.0, 127.4, 126.9, 126.0, 120.0, 64.4, 42.3, 34.4, 30.4, 29.2, 28.4; FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3639, 2957, 1436, 1009, 700; HRMS (CI) calcd C\(_{30}\)H\(_{38}\)BrO [M + H]\(^+\): 493.2106, found: 493.2087.

4-((1-Benzylcyclohexyl)(4-bromophenyl)methyl)-2,6-di-tert-butylphenol (4j):
White solid; m.p. 101-104 °C; 43% yield (47 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40 (d, \(J = 8.1\) Hz, 2H), 7.30 (d, \(J = 8.2\) Hz, 2H), 7.24 – 7.15 (m, 5H), 6.94 (d, \(J = 6.2\) Hz, 2H), 5.07 (s, 1H), 4.03 (s, 1H), 2.95 (d, \(J = 13.3\) Hz, 1H), 2.83 (d, \(J = 13.2\) Hz, 1H), 1.71 – 1.55 (m, 4H), 1.44 (s, 18H), 1.40 – 1.18 (m, 6H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 152.2, 142.3, 138.9, 135.2, 132.5, 132.3, 131.5, 131.0, 127.6, 127.1, 125.9, 119.8, 56.4, 41.2, 34.5, 32.5, 32.4, 30.6, 25.8, 22.1, 22.0; FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3638, 2924, 2862, 1436, 702; HRMS (CI) calcd C\(_{34}\)H\(_{44}\)BrO [M + H]\(^+\): 547.2576, found: 547.2575.
5. NMR Spectra for the substrates and products

1H NMR of 1a

13C NMR of 1a
1H NMR of 1b

13C NMR of 1b
1H NMR of 1c

13C NMR of 1c
1H NMR of 1d

13C NMR of 1d
1H NMR of 1e

13C NMR of 1e
1H NMR of $1f$

13C NMR of $1f$
1H NMR of 13C NMR of 13C NMR of 1g
1H NMR of 1h

13C NMR of 1h
1H NMR of 1i

13C NMR of 1i
1H NMR of 1j
13C NMR of 1j

1H NMR of 1k
^{13}C NMR of 1k

1H NMR of 2a

^{13}C NMR of 2a
1H NMR of 2b

13C NMR of 2b
1H NMR of 2c

13C NMR of 2c
1H NMR of 2d

13C NMR of 2d
1H NMR of 2e

13C NMR of 2e
1H NMR of 2f

13C NMR of 2f
^{1}H NMR of $2g$

^{13}C NMR of $2g$
1H NMR of 2h

13C NMR of 2h
1H NMR of 2i

13C NMR of 2i
1H NMR of 2j

13C NMR of 2j
1H NMR of 2k
1H NMR of 3a

13C NMR of 3a
1H NMR of 3b

13C NMR of 3b
\(^1\)H NMR of 3c

\[^{13}\text{C} \text{ NMR of 3c}\]
1H NMR of 3d

13C NMR of 3d
1H NMR of $3e$

13C NMR of $3e$
1H NMR of $3g$

13C NMR of $3g$
1H NMR of 3h

13C NMR of 3h
1H NMR of 3i

13C NMR of 3i
1H NMR of 3j

13C NMR of 3j
1H NMR of 3k

13C NMR of 3k
1H NMR of 4a

13C NMR of 4a
1H NMR of 4b

13C NMR of 4b
1H NMR of 4c

13C NMR of 4c
1H NMR of $4d$

13C NMR of $4d$
1H NMR of 4e

13C NMR of 4e
^{1}H NMR of 4f

^{13}C NMR of 4f
1H NMR of 4g

13C NMR of 4g
1H NMR of 4h

13C NMR of 4h
1H NMR of 4i

13C NMR of 4i