Thio-Michael Addition of Thioamides and Allenes for the Selective Construction of Polysubstituted 2-Arylthiophenes via TBAI/H2O2 Promoted Tandem Oxidative Annulation and 1,2-Sulfur Migration

Teng Han and Xiaoyan Luo*

School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

Contents

1.	General information
2.	Optimization of oxidative annulation reaction of 1a with 2aS3
3.	Preparation and characterization data of polysubstituted thiophenes (3aa-3ab)S4
4.	¹ H NMR and ¹³ C NMR spectraS11
5.	X-ray structure for 3aaS30

1. General information

Commercial reagents were used without further purification, unless otherwise noted. Melting points were obtained in open capillary tubes using SGW X-4 micro melting point apparatus which was uncorrected. The mass spectra were recorded on a TOF mass spectrometer using the EI method. ¹H NMR spectra were recorded using Bruker DPX 400 M spectrometer at ambient temperatures and the CDCl₃ as the solvent. Chemical shifts (in ppm) with internal TMS signal is 0.0 ppm as standard are reported as (s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet).¹³C NMR spectra were recorded on a 100 MHz spectrometer by broadband spin decoupling for CDCl₃ at ambient temperatures. The standard of chemical shifts (in ppm) is the signal of internal chloroform which at 77.0 ppm. TLC was performed by using commercially prepared 100–400 mesh silica gel plates, and visualization was effected at 254 or 365 nm.

		∫ S ∭ _ MeO₂C		D ₂ Me	_NCC	0 ₂ Me
	×	CO ₂ Me	solvent S	+ CO ₂ Me	s	CO ₂ Me
		1a 2a	Temp. 3aa		4aa	-
Entry	cat.	[0]	Solvent	Temp (°C)	Yield 3aa[%] ^a	Yield 4aa[%] ^a
1	TBAI	TBHP (2 equiv.)	1,4-dioxane	60	-	40
2	TBAI	TBHP (1 equiv.)	1,4-dioxane	60	30	23
3	TBAI	TBHP (1 equiv.)	DCE	60	34	20
4	TBAI	TBHP (1 equiv.)	toluene	60	20	25
5	TBAI	TBHP (1 equiv.)	THF	60	24	trace
6	TBAI	TBHP (1 equiv.)	EtOAc	60	26	trace
7	TBAI	TBHP (1 equiv.)	CH ₃ CN	60	20	trace
8	TBAI	TBHP (1 equiv.)	EtOH	60	trace	-
7	TBAI	H_2O_2 (1 equiv.)	DCE	60	50	trace
8	TBAI	mCPBA (1 equiv.)	DCE	60	41	trace
9	TBAI	TBPB(1 equiv.)	DCE	60	20	-
10	TBAI	$K_2S_2O_8$ (1 equiv.)	DCE	60	trace	-
11	TBAI	DTBP(1 equiv.)	DCE	60	22	trace
12	TBAI	H_2O_2 (1 equiv.)	DCE	55	48	trace
13	TBAI	H_2O_2 (1 equiv.)	DCE	50	46	trace
14	TBAI	H_2O_2 (1 equiv.)	DCE	45	43	trace
15	TBAI	H_2O_2 (1 equiv.)	DCE	40	44	trace
16	TBAI	H_2O_2 (1 equiv.)	DCE	25	48	trace
17	TBAI	H_2O_2 (1 equiv.)	DCE	70	40	trace
18	NIS	H_2O_2 (1 equiv.)	DCE	60	30	trace
19	KI	H_2O_2 (1 equiv.)	DCE	60	26	trace
20	I_2	H_2O_2 (1 equiv.)	DCE	60	38	trace
21 ^c	TBAI	H_2O_2 (1 equiv.)	DCE	60	53	trace
22^d	TBAI	H_2O_2 (1 equiv.)	DCE	60	50	trace
23 ^c	TBAI	H ₂ O ₂ (1.2 equiv.)	DCE	60	46	trace
24 ^c	TBAI	H ₂ O ₂ (1.5 equiv.)	DCE	60	54	trace
25 ^c	TBAI	$H_2O_2(1.8 \text{ equiv.})$	DCE	60	58	trace
26 ^c	TBAI	H ₂ O ₂ (2.0 equiv.)	DCE	60	45	trace
27 ^c	TBAI	TBHP (1.8 equiv.)	DCE	60	42	trace
28 ^c	TBAI	TBPB (1.8 equiv.)	DCE	60	trace	-
29 ^c	TBAI	DTBP (1.8 equiv.)	DCE	60	trace	-
30 ^c	TBAI	m-CPBA (1.8 equiv.)	DCE	60	trace	-
31 ^c	TBAI	Ag ₂ O (1.8 equiv.)	DCE	60	-	-
32 ^c	TBAI	oxone (1.8 equiv.)	DCE	60	-	-
33 ^c	TBAI	PhI(OAc) ₂ (1.8 equiv.)	DCE	60	12	35
34 ^c	TBAI	FeCl ₃ (1.8 equiv.)	DCE	60	40	trace
35 ^c	TBAI	$K_2O_8S_2$ (1.8 equiv.)	DCE	60	38	-

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), cat. (0.04 mmol), oxidant (0.4 mmol), solvent (1 mL), under air atmosphere, 7h. ^{*b*}Isolated yield. ^{*c*}**1a** (0.24 mmol), **2a** (0.2 mmol). ^{*d*}**1a** (0.3 mmol), **2a** (0.2 mmol).

3. Preparation and characterization data of polysubstituted thiophenes (3aa-3ab).

General procedure: Thioamides compounds **1** (0.24 mmol), allene **2** (0.2 mmol), and $H_2O_2(0.36 \text{ mmol})$ were added to a solution of TBAI (0.04 mmol) in 1,2-dichloroethane (1 mL) under an air atmosphere. The mixture was then stirred at 60 °C until the reaction was nearly completed monitored by the TLC. The resulting mixture was concentrated in vacuum and then purified by column chromatography on 100–200 mesh silica gel to afford the desired products **3**.

Methyl4-(dimethylamino)-2-(2-methoxy-2-oxoethyl)-5-phenylthiophene-3-
carboxylate (3aa). A yellow solid (38.6 mg, 58% yield), Mp: 57-59 °C. ¹H NMR (400 MHz,
CDCl₃) δ 7.58- 7.54 (m, 2H, ArH), 7.41-7.33 (m, 2H, ArH), 7.33-7.28 (m, 1H, ArH), 3.95 (s,
2H, CH₂), 3.87 (s, 3H, CO₂CH₃), 3.74 (s, 3H, CO₂CH₃), 2.69 (s, 6H, N(CH₃)₂). ¹³C NMR (100
MHz, CDCl₃) δ 170.3 (C=O), 164.7 (C=O), 146.9 (ArC), 138.2 (ArC), 133.7 (ArC), 130.9
(ArC), 128.8 (ArC), 128.7 (2×ArC), 128.3 (2×ArC), 127.5 (ArC), 52.3 (CO₂CH₃), 51.7
(CO₂CH₃), 43.4 (N(CH₃)₂), 35.4 (CH₂). HRMS (EI-TOF) calcd for C₁₇H₁₉NO₄S [M]⁺:
333.1029, found: 333.1036.

The further oxidation product of 3aa (4aa). A yellow solid (27.8 mg, 40% yield), Mp: 86-88 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.59 (m, 2H, Ar*H*), 7.53-7.36 (m, 3H, Ar*H*), 4.23-3.81 (m, 6H, 2×CO₂C*H*₃), 2.69 (s, 6H, N(C*H*₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 173.9 (*C*=O), 166.2 (*C*=O), 161.7 (*C*=O), 147.6 (Ar*C*), 144.7 (Ar*C*), 139.5 (Ar*C*), 132.5 (Ar*C*), 129.8 (Ar*C*), 129.2 (Ar*C*), 128.7 (2×Ar*C*), 128.6 (2×Ar*C*), 53.4 (CO₂CH₃), 53.0 (CO₂CH₃), 43.5 (N(CH₃)₂). HRMS (EI-TOF) calcd for C₁₇H₁₇NO₅S [M]⁺: 347.0822, found: 347.0828.

Methyl 4-(diethylamino)-2-(2-methoxy-2-oxoethyl)-5-phenylthiophene-3carboxylate (3ba) A yellow solid (31.8 mg, 44% yield), Mp: 61-63 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.63 (m, 2H, Ar*H*), 7.41-7.32 (m, 2H, Ar*H*), 7.31-7.27 (m, 1H, Ar*H*), 3.95 (s, 2H, C*H*₂), 3.85 (s, 3H, CO₂C*H*₃), 3.74 (s, 3H, CO₂C*H*₃), 2.98 (q, J = 7.2 Hz, 4H, N(C*H*₂CH₃)₂), 0.95 (t, J = 7.2 Hz, 6H, N(CH₂C*H*₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 170.4 (*C*=O), 165.1 (*C*=O), 144.5 (Ar*C*), 137.4 (Ar*C*), 133.9 (Ar*C*), 133.8 (Ar*C*), 130.1 (Ar*C*), 128.7 (2×Ar*C*), 128.1 (2×Ar*C*), 127.4 (Ar*C*), 52.3 (CO₂CH₃), 51.6 (CO₂CH₃), 47.6 (N(CH₂CH₃)₂), 35.4 (CH₂), 14.0 (N(CH₂CH₃)₂). HRMS (EI-TOF) calcd for C₁₉H₂₃NO₄S [M]⁺: 361.1342, found: 361.1346.

Methyl2-(2-methoxy-2-oxoethyl)-4-morpholino-5-phenylthiophene-3-
carboxylate (3ca). A yellow solid (34.5 mg, 46% yield), Mp: 112-114 °C. ¹H NMR
(400 MHz, CDCl₃) δ 7.55-7.50 (m, 2H, Ar*H*), 7.43-7.31 (m, 3H, Ar*H*), 3.95 (s, 2H,
CH₂), 3.88 (s, 3H, CO₂CH₃), 3.74 (s, 3H, CO₂CH₃), 3.68-3.63 (m, 4H, N(CH₂CH₂)₂O),
3.00-2.94 (m, 4H, N(CH₂CH₂)₂O).¹³C NMR (100 MHz, CDCl₃) δ 170.3 (C=O), 164.6
(C=O), 145.2 (ArC), 138.5 (ArC), 133.4 (ArC), 131.9 (ArC), 129.6 (2×ArC), 128.9
(ArC), 128.3 (2×ArC), 127.9 (ArC), 67.5 (N(CH₂CH₂)₂O), 52.3 (CO₂CH₃), 51.7
(CO₂CH₃), 51.6 (N(CH₂CH₂)₂O), 35.3 (CH₂). HRMS (EI-TOF) calcd for C₁₉H₂₁NO₅S
[M]⁺: 375.1135, found: 375.1143.

Methyl 4-(benzyl(methyl)amino)-2-(2-methoxy-2-oxoethyl)-5-phenylthiophene-3carboxylate (3da) A yellow solid (38.5 mg, 47% yield), Mp: 66-68 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 2H, Ar*H*), 7.39-7.31 (m, 3H, Ar*H*), 7.20-7.16 (m, 3H, Ar*H*), 7.14-7.09 (m, 2H, Ar*H*), 4.00 (s, 2H, Ar*CH*₂), 3.97 (s, 2H, C*H*₂C=O), 3.88 (s, 3H, CO₂C*H*₃), 3.75 (s, 3H, CO₂C*H*₃), 2.66 (s, 3H, NC*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.3 (*C*=O), 164.8 (*C*=O), 146.5 (Ar*C*), 139.1 (Ar*C*), 138.6 (Ar*C*), 133.5 (Ar*C*), 132.8 (Ar*C*), 129.4 (2×Ar*C*), 129.0 (Ar*C*), 128.6 (2×Ar*C*), 128.2 (2×Ar*C*), 127.9 (2×Ar*C*), 127.7 (Ar*C*), 126.7 (Ar*C*), 60.3 (ArCH₂), 52.3 (CO₂CH₃), 51.7 (CO₂CH₃), 41.0 (NCH₃), 35.5 (CH₂C=O). HRMS (EI-TOF) calcd for C₂₃H₂₃NO₄S [M]⁺: 409.1342, found: 409.1347.

Methyl 2-(2-methoxy-2-oxoethyl)-5-phenyl-4-(pyrrolidin-1-yl) thiophene-3carboxylate (3ea) A yellow oil (34.5 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.53 (m, 2H, Ar*H*), 7.38-7.33 (m, 2H, Ar*H*), 7.31-7.27 (m, 1H, Ar*H*), 3.95 (s, 2H, C*H*₂), 3.85 (s, 3H, CO₂C*H*₃), 3.74 (s, 3H, CO₂C*H*₃), 3.15-3.04 (m, 4H, N(C*H*₂C*H*₂)₂), 1.91-1.77 (m, 4H, N(CH₂C*H*₂)₂). ¹³C NMR (100 MHz, CDCl₃) δ 170.4 (*C*=O), 164.9 (*C*=O), 143.1 (Ar*C*), 138.1 (Ar*C*), 133.9 (Ar*C*), 131.0 (Ar*C*), 128.6 (Ar*C*), 128.6 (2×Ar*C*), 128.2 (2×Ar*C*), 127.3 (Ar*C*), 52.3 (CO₂CH₃), 51.7 (CO₂CH₃), 51.3 (N(CH₂CH₂)₂), 35.4 (CH₂), 26.0 ((N(CH₂CH₂)₂). HRMS (EI-TOF) calcd for C₁₉H₂₁NO₄S [M]⁺: 359.1186, found: 359.1192.

Methyl 5-(4-chlorophenyl)-4-(dimethylamino)-2-(2-methoxy-2-oxoethyl) thiophene-3-carboxylate (3fa) A yellow solid (44.7 mg, 61% yield), Mp: 70-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.50 (m, 2H, Ar*H*), 7.38-7.31 (m, 2H, Ar*H*), 3.94 (s, 2H, C*H*₂), 3.88 (s, 3H, CO₂C*H*₃), 3.74 (s, 3H, CO₂C*H*₃), 2.69 (s, 6H, N(C*H*₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 170.3 (*C*=O), 164.7 (*C*=O), 147.2 (Ar*C*), 138.4 (Ar*C*), 133.2 (Ar*C*), 132.1 (Ar*C*), 129.8 (Ar*C*), 129.6 (2×Ar*C*), 129.0 (Ar*C*), 128.5 (2×Ar*C*), 52.4 (CO₂CH₃), 51.7 (CO₂CH₃), 43.2 (N(CH₃)₂), 35.4 (CH₂). HRMS (EI-TOF) calcd for C₁₇H₁₈CINO₄S [M]⁺: 367.0640, found: 367.0644.

Methyl 5-(3-chlorophenyl)-4-(dimethylamino)-2-(2-methoxy-2-oxoethyl) thiophene-3-carboxylate (3ga) A yellow oil (40.4mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.59 (m, 1H, Ar*H*), 7.49-7.42 (m, 1H, Ar*H*), 7.28-7.24 (m, 2H, Ar*H*), 3.95 (s, 2H, C*H*₂), 3.88 (s, 3H, CO₂C*H*₃), 3.74 (s, 3H, CO₂C*H*₃), 2.70 (s, 6H, N(C*H*₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 170.2 (*C*=O), 164.6 (*C*=O), 147.5 (Ar*C*), 138.7 (Ar*C*), 135.4 (Ar*C*), 134.2 (Ar*C*), 129.5 (Ar*C*), 129.2 (Ar*C*), 128.9 (Ar*C*), 128.3 (Ar*C*), 127.4 (Ar*C*), 126.5 (Ar*C*), 52.3 (CO₂CH₃), 51.7 (CO₂CH₃), 43.2 (N(CH₃)₂), 35.3 (CH₂). HRMS (EI-TOF) calcd for C₁₇H₁₈CINO₄S [M]⁺: 367.0640, found: 367.0648.

Methyl 5-(2-chlorophenyl)-4-(dimethylamino)-2-(2-methoxy-2-oxoethyl) thiophene-3-carboxylate (3ha) A yellow oil (28.7 mg, 39% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 1H, Ar*H*), 7.38 (dd, *J* = 7.1, 2.2 Hz, 1H, Ar*H*), 7.33-7.27 (m, 2H, Ar*H*), 3.96 (s, 2H, *CH*₂), 3.87 (s, 3H, CO₂C*H*₃), 3.74 (s, 3H, CO₂C*H*₃), 2.61 (s, 6H, N(*CH*₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 170.2 (*C*=O), 164.5 (*C*=O), 148.6 (Ar*C*), 139.8 (Ar*C*), 135.1 (Ar*C*), 133.3 (Ar*C*), 133.0 (Ar*C*), 129.5 (Ar*C*), 129.5 (Ar*C*), 127.2 (Ar*C*), 126.3 (Ar*C*), 123.2 (Ar*C*), 52.3 (CO₂CH₃), 51.7 (CO₂CH₃), 43.5 (N(CH₃)₂), 35.5 (CH₂). HRMS (EI-TOF) calcd for C₁₇H₁₈CINO₄S [M]⁺: 367.0640, found: 367.0643.

Methyl 5-(4-bromophenyl)-4-(dimethylamino)-2-(2-methoxy-2-oxoethyl) thiophene-3-carboxylate (3ia) A yellow solid (37.9 mg, 46% yield), Mp: 70-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.38 (m, 4H, Ar*H*), 3.94 (s, 2H, C*H*₂), 3.88 (s, 3H, CO₂C*H*₃), 3.74 (s, 3H, CO₂C*H*₃), 2.69 (s, 6H, N(C*H*₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 170.2 (*C*=O), 164.6 (*C*=O), 147.2 (Ar*C*), 138.5 (Ar*C*), 132.6 (Ar*C*), 131.5 (2×Ar*C*), 129.9 (2×Ar*C*), 129.8 (Ar*C*), 129.0 (Ar*C*), 121.4 (Ar*C*), 52.3 (CO₂C*H*₃), 51.7 (CO₂C*H*₃), 43.2 (N(C*H*₃)₂), 35.3 (C*H*₂). HRMS (ESI-TOF) calcd for C₁₇H₁₈BrNO₄S [M]⁺: 411.0134, found: 411.0142.

Methyl 4-(dimethylamino)-5-(4-fluorophenyl)-2-(2-methoxy-2-oxoethyl) thiophene-3-carboxylate (3ja) A yellow solid (29.5 mg, 42% yield), Mp: 60-62 °C.¹H NMR (400 MHz, CDCl₃) δ 7.62-7.46 (m, 2H, Ar*H*), 7.18-6.90 (m, 2H, Ar*H*), 3.94 (s, 2H, C*H*₂), 3.87 (s, 3H, CO₂C*H*₃), 3.74 (s, 3H, CO₂C*H*₃), 2.68 (s, 6H, N(C*H*₃)₂).¹³C NMR (100 MHz, CDCl₃) δ 170.3 (*C*=O), 164.7 (*C*=O), 162.2 (d, ¹*J*_{CF} = 246.0 Hz, Ar*C*), 146.9 (Ar*C*), 138.1 (Ar*C*), 130.3 (d, ³*J*_{CF} = 7.9 Hz, 2×Ar*C*), 130.1 (Ar*C*), 129.7 (d, ⁴*J*_{CF} = 3.4 Hz, Ar*C*), 128.9 (Ar*C*), 115.3 (d, ²*J*_{CF} = 21.4 Hz, 2×Ar*C*), 52.3 (CO₂CH₃), 51.7 (CO₂CH₃), 43.3 (N(CH₃)₂), 35.3 (CH₂). HRMS (EI-TOF) calcd for C₁₇H₁₈FNO₄S [M]⁺: 351.0935, found: 351.0943.

Methyl 4-(dimethylamino)-2-(2-methoxy-2-oxoethyl)-5-(4-(trifluoromethyl) phenyl) thiophene-3-carboxylate (3ka) A yellow solid (32.1 mg, 40% yield), Mp: 72-75 °C.¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.2 Hz, 2H, Ar*H*), 7.62 (d, *J* = 8.3 Hz, 2H, Ar*H*), 3.96 (s, 2H, CH₂), 3.89 (s, 3H, CO₂CH₃), 3.75 (s, 3H, CO₂CH₃), 2.71 (s, 6H, N(CH₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 170.1 (*C*=O), 164.6 (*C*=O), 148.0 (Ar*C*), 139.2 (Ar*C*), 137.2 (Ar*C*), 129.2 (Ar*C*), 129.1 (Ar*C*), 129.1 (q, ²*J*_{CF} = 86.1 Hz, Ar*C*), 128.4 (2×Ar*C*), 125.3 (q, ³*J*_{CF} = 3.8 Hz, 2×Ar*C*), 124.2 (q, ¹*J*_{CF} = 270.3 Hz, *C*F₃), 52.4 (CO₂CH₃), 51.8 (CO₂CH₃), 43.1 (N(CH₃)₂), 35.3 (CH₂). HRMS (EI-TOF) calcd for C₁₈H₁₈F₃NO₄S [M]⁺: 401.0903, found: 401.0908.

Methyl4-(dimethylamino)-2-(2-methoxy-2-oxoethyl)-5-(4-methoxyphenyl)thiophene-3-carboxylate (3la) A yellow oil (40.7 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.45 (m, 2H, Ar*H*), 6.93-6.86 (m, 2H, Ar*H*), 3.93 (s, 2H, C*H*₂), 3.87 (s, 3H, CO₂C*H*₃),3.83 (s, 3H, ArOC*H*₃), 3.73 (s, 3H, CO₂C*H*₃), 2.68 (s, 6H, N(C*H*₃)₂).¹³C NMR (100 MHz,CDCl₃) δ 170.4 (C=O), 164.8 (C=O), 159.0 (ArC), 146.2 (ArC), 137.4 (ArC), 131.2 (ArC),129.9 (2×ArC), 128.8 (ArC), 126.1 (ArC), 113.7 (2×ArC), 55.2 (ArOCH₃), 52.3 (CO₂CH₃),51.6 (CO₂CH₃), 43.4 (N(CH₃)₂), 35.4 (CH₂). HRMS (EI-TOF) calcd for C₁₈H₂₁NO₅S [M]⁺:363.1135, found: 363.1141.

Methyl 4-(dimethylamino)-2-(2-methoxy-2-oxoethyl)-5-(o-tolyl) thiophene-3carboxylate (3ma) A yellow oil (26.4 mg, 38% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.14 (m, 4H, Ar*H*), 3.94 (s, 2H, C*H*₂), 3.87 (s, 3H, CO₂C*H*₃), 3.74 (s, 3H, CO₂C*H*₃), 2.57 (s, 6H, N(C*H*₃)₂), 2.26 (s, 3H, ArC*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.4 (*C*=O), 164.8 (*C*=O), 147.5 (Ar*C*), 138.7 (Ar*C*), 138.0 (Ar*C*), 133.3 (Ar*C*), 131.9 (Ar*C*), 129.9 (Ar*C*), 128.3 (Ar*C*), 127.5 (Ar*C*), 126.7 (Ar*C*), 125.3 (Ar*C*), 52.3 (CO₂CH₃), 51.7 (CO₂CH₃), 43.7 (N(CH₃)₂), 35.4 (CH₂), 20.5 (ArCH₃). HRMS (EI-TOF) calcd for C₁₈H₂₁NO₄S [M]⁺: 347.1186, found: 347.1194.

Methyl 4-(dimethylamino)-2-(2-methoxy-2-oxoethyl)-5-(p-tolyl) thiophene-3carboxylate (3na) A yellow solid (36.8 mg, 53% yield), Mp: 97-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.1 Hz, 2H, ArH), 7.18 (d, J = 8.0 Hz, 2H, ArH), 3.94 (s, 2H, CH₂), 3.87 (s, 3H, CO₂CH₃), 3.74 (s, 3H, CO₂CH₃), 2.69 (s, 6H, N(CH₃)₂), 2.37 (s, 3H, ArCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.4 (C=O), 164.8 (C=O), 146.6 (ArC), 137.8 (ArC), 137.3 (ArC), 131.2 (ArC), 130.8 (ArC), 129.0 (2×ArC), 128.8(ArC), 128.6 (2×ArC), 52.3 (CO₂CH₃), 51.6 (CO₂CH₃), 43.4 (N(CH₃)₂), 35.4 (CH₂), 21.2 (ArCH₃). HRMS (EI-TOF) calcd for $C_{18}H_{21}NO_4S$ [M]⁺: 347.1186, found: 347.1193.

Methyl 4-(dimethylamino)-2-(2-methoxy-2-oxoethyl)-5-(m-tolyl) thiophene-3carboxylate (3oa) A yellow oil (34.7 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 2H, Ar*H*), 7.28-7.20 (m, 1H, Ar*H*), 7.17-7.06 (m, 1H, Ar*H*), 3.94 (s, 2H, C*H*₂), 3.87 (s, 3H, CO₂C*H*₃), 3.74 (s, 3H, CO₂C*H*₃), 2.69 (s, 6H, N(C*H*₃)₂), 2.38 (s, 3H, ArC*H*₃).¹³C NMR (100 MHz, CDCl₃) δ 170.4 (C=O), 164.7 (C=O), 146.8 (ArC), 138.1 (ArC), 137.8 (ArC), 133.6 (ArC), 131.0 (ArC), 129.4 (ArC), 128.8 (ArC), 128.2 (ArC), 128.1 (ArC), 125.8 (ArC), 52.3 (CO₂CH₃), 51.6 (CO₂CH₃), 43.5 (N(CH₃)₂), 35.4 (CH₂), 21.5 (ArCH₃). HRMS (EI-TOF) calcd for C₁₈H₂₁NO₄S [M]⁺: 347.1186, found: 347.1196.

Methyl3-(dimethylamino)-5-(2-methoxy-2-oxoethyl)-[2,3'-bithiophene]-4-carboxylate (3pa) A yellow oil (33.9 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd,J = 3.0, 1.3 Hz, 1H, ArH), 7.39 (dd, J = 5.0, 1.3 Hz, 1H, ArH), 7.31 (dd, J = 5.0, 3.0 Hz, 1H,ArH), 3.94 (s, 2H, CH₂), 3.88 (s, 3H, CO₂CH₃), 3.74 (s, 3H, CO₂CH₃), 2.74 (s, 6H, N(CH₃)₂).¹³C NMR (100 MHz, CDCl₃) δ 170.3 (C=O), 164.8 (C=O), 146.6 (ArC), 137.1 (ArC), 133.4(ArC), 129.0 (ArC), 128.2 (ArC), 127.3 (ArC), 125.1 (ArC), 121.8 (ArC), 52.3 (CO₂CH₃), 51.7(CO₂CH₃), 42.8 (N(CH₃)₂), 35.3 (CH₂). HRMS (EI-TOF) calcd for C₁₅H₁₇NO₄S₂ [M]⁺:339.0594, found: 339.0600.

Methyl 4-(dimethylamino)-2-(2-methoxy-2-oxoethyl)-5-(naphthalen-2-yl) thiophene-3-carboxylate (3qa) A yellow solid (43.7 mg, 57% yield), Mp: 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.96 (m, 1H, Ar*H*), 7.86-7.81 (m, 3H, Ar*H*), 7.77-7.70 (m, 1H, Ar*H*), 7.52-7.46 (m, 2H, Ar*H*), 3.98 (s, 2H, C*H*₂), 3.89 (s, 3H, CO₂C*H*₃), 3.75 (s, 3H, CO₂C*H*₃), 2.73 (s, 6H, N(C*H*₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 170.3 (*C*=O), 164.8 (*C*=O), 147.2 (Ar*C*), 138.4 (Ar*C*), 133.2 (Ar*C*), 132.6 (Ar*C*), 131.2 (Ar*C*), 130.8 (Ar*C*), 128.9 (Ar*C*), 128.1 (Ar*C*), 127.8 (Ar*C*), 127.6 (Ar*C*), 127.3 (Ar*C*), 126.8 (Ar*C*), 126.3 (Ar*C*), 126.1 (Ar*C*), 52.3 (CO₂CH₃), 51.7 (CO₂CH₃), 43.4 (N(CH₃)₂), 35.4 (CH₂). HRMS (EI-TOF) calcd for C₂₁H₂₁NO₄S [M]⁺: 383.1186, found: 383.1192.

Ethyl 4-(dimethylamino)-2-(2-ethoxy-2-oxoethyl)-5-phenylthiophene-3-carboxylate (**3ab**) A yellow oil (37.5 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.53 (m, 2H, Ar*H*), 7.41-7.33 (m, 2H, Ar*H*), 7.33-7.27 (m, 1H, Ar*H*), 4.34 (q, J = 7.2 Hz, 2H, OC*H*₂CH₃), 4.19 (q, J = 7.2 Hz, 2H, OC*H*₂CH₃), 3.95 (s, 2H, C*H*₂), 2.70 (s, 6H, N(C*H*₃)₂), 1.39 (t, J = 7.1 Hz, 3H, OCH₂C*H*₃), 1.28 (t, J = 7.2 Hz, 3H, OCH₂C*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 169.9 (*C*=O), 164.4 (*C*=O), 146.8 (Ar*C*), 137.9 (Ar*C*), 133.8 (Ar*C*), 131.0 (Ar*C*), 129.4 (Ar*C*), 128.6 (2×Ar*C*), 128.3 (2×Ar*C*), 127.4 (Ar*C*), 61.2 (OCH₂CH₃), 60.8 (OCH₂CH₃), 43.4 (N(CH₃)₂), 35.6 (*C*H₂), 14.2 (OCH₂CH₃), 14.1 (OCH₂CH₃). HRMS (EI-TOF) calcd for C₁₉H₂₃NO₄S [M]⁺: 361.1342, found: 361.1350.

4. ¹H NMR and ¹³C NMR spectra

¹H NMR spectrum of compound **3aa** (CDCl₃)

¹H NMR spectrum of compound **4aa** (CDCl₃)

¹H NMR spectrum of compound **3ba** (CDCl₃)

---0.000

¹³C NMR spectrum of compound **3ba** (CDCl₃)

¹H NMR spectrum of compound **3ca** (CDCl₃)

7.531 7.51 7.51 7.51 7.51 7.51 7.50 8 7.389 7.389 7.389 7.389 7.374 7.374 7.376 7.356 7.356 7.356 7.356 7.339 7.339

3.946 3.877 3.744 3.744 3.667 3.656 3.644 2.988 2.988 2.965 -0.000

¹H NMR spectrum of compound **3da** (CDCl₃)

¹³C NMR spectrum of compound **3da**(CDCl₃)

¹H NMR spectrum of compound **3ea** (CDCl₃)

7.569 7.565 7.561 7.552 7.552 7.554 7.554 7.554 7.555 7.7.548 7.7.348 7.7.399 7.295 7.7.295 7.7.295 7.7.295 7.7.295 7.7.295 7.7.295 7.7.295

-3.845 -3.849 -3.849 3.109 3.109 3.003 3.007 3.007 1.852 1.852 1.842 1.8

¹H NMR spectrum of compound **3fa** (CDCl₃)

¹³C NMR spectrum of compound **3fa**(CDCl₃)

¹H NMR spectrum of compound **3ga** (CDCl₃)

¹³C NMR spectrum of compound **3ga**(CDCl₃)

¹H NMR spectrum of compound **3ha** (CDCl₃)

¹³C NMR spectrum of compound **3ha** (CDCl₃)

¹H NMR spectrum of compound **3ia**(CDCl₃)

¹³C NMR spectrum of compound **3ia** (CDCl₃)

¹³C NMR spectrum of compound **3ja** (CDCl₃)

¹H NMR spectrum of compound **3ka** (CDCl₃)

¹³C NMR spectrum of compound **3ka** (CDCl₃)

¹H NMR spectrum of compound **3la** (CDCl₃)

¹H NMR spectrum of compound **3ma** (CDCl₃)

¹³C NMR spectrum of compound **3ma** (CDCl₃)

¹H NMR spectrum of compound **3na** (CDCl₃)

¹³C NMR spectrum of compound **3na** (CDCl₃)

¹H NMR spectrum of compound **3oa** (CDCl₃)

¹H NMR spectrum of compound **3pa** (CDCl₃)

¹H NMR spectrum of compound **3qa** (CDCl₃)

¹H NMR spectrum of compound **3ab** (CDCl₃)

100 90 f1 (ppm)

^{5.} X-ray structure for 3aa

Fig. X-ray structure of **3aa**. Ellipsoids are drawn at the 30% probability level.

Crystal data and structure refinement for dm17469.						
Identification code	dm17469					
Empirical formula	C17 H19 N O4 S					
Formula weight	333.39					
Temperature	296 К					
Wavelength	0.71073 Å					
Crystal system	Monoclinic					
Space group	C 1 2/c 1					
Unit cell dimensions	a = 15.538(5) Å	a= 90°.				
	b = 6.0233(19) Å	b=96.818(12)°.				
	c = 37.422(12) Å	g = 90°.				
Volume	3477.7(19) Å3					
Z	8					
Density (calculated)	1.274 Mg/m3					
Absorption coefficient	0.204 mm-1					
F(000)	1408					
Crystal size	0.12 x 0.1 x 0.05 mm3					
Theta range for data collection	2.192 to 25.997°.					
Index ranges	-11<=h<=18, -7<=k<=7, -46<=l<=46					
Reflections collected	12121					
Independent reflections	3425 [R(int) = 0.0424]					
Completeness to theta = 25.242°	99.9 %					
Absorption correction	Semi-empirical from equivalents					
Max. and min. transmission	0.7456 and 0.6659					
Refinement method	Full-matrix least-squares on F2					
Data / restraints / parameters	3425 / 0 / 249					
Goodness-of-fit on F2	1.190					

Final R indices [I>2sigma(I)]	R1 = 0.0706, wR2 = 0.1855				
R indices (all data)	R1 = 0.1174, wR2 = 0.2104				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.192 and -0.377 e.Å-3				
http://www.ccdc.cam.ac.uk/deposit/CCDC 1856667					