Supplementary information

Organic amines-mediated free-radical carbocyclization reactions of 2,2,2-trihalogeno substituted N-(2-alkynylphenyl)acetamides

Tsung-Han Chuang and Che-Ping Chuang*

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China.
Fax: +886-6-2740552; E-mail: cpchuang@mail.ncku.edu.tw

Contents

1) Experimental details and characterization data of the starting N-(2-alkynylphenyl)trichloroacetamides 7.
2) Experimental details and characterization data of the starting N-(2-alkynylphenyl)tribromoacetamides 9.
3) Copies of 1H and 13C NMR spectra for the starting N-(2-alkynylphenyl)trichloroacetamides 7 and N-(2-alkynylphenyl)tribromoacetamides 9.
4) Copies of 1H and 13C NMR spectra for 4-benzoxyquinolin-2(1H)-ones 8 and 10.
Experimental Section

General considerations: Melting points are uncorrected. Infrared spectra were taken with a Hitachi 260-30 spectrometer. 1H and 13C NMR spectra were recorded on a Bruker AMX-400 spectrometer. Chemical shifts are reported in ppm relative to TMS as internal reference. The multiplicity of the 13C NMR signals was determined by means of DEPT 135 experiments. Elemental analyses were performed with Heraeus ChN-Rapid Analyzer. Mass spectra were recorded on a Jeol JMS-SX 102A mass spectrometer. Analytical thin-layer chromatography was performed with precoated silica gel 60 F254 plates (0.25 mm thick) from EM Laboratories and visualized by UV. The reaction mixture was purified by column chromatography over EM Laboratories silica gel (70–230 mesh).

1) Experimental details and characterization data of starting N-(2-alkynylphenyl)-2,2,2-trichloroacetamides 7.

Typical procedure for the preparation of N-(alkynylphenyl)-2,2,2-trichloroacetamides 7:

A solution of N-benzyl-2-(phenylethynyl)phenylamine (1.08 g, 3.81 mmol), 2,2,2-trichloroacetylchloride (1.06 g, 5.83 mmol), triethylamine (603 mg, 5.96 mmol) and DMAP (49 mg, 0.40 mmol) in chloroform (20 ml) was stirred in an ice-water bath for 15 min. The reaction mixture was then diluted with 100 ml of ethyl acetate washed with water (3 × 50 ml), dried over Na$_2$SO$_4$, and concentrated in vacuo. The residue was chromatographed over 20 g of silica gel (eluted with 1.20 ethyl acetate–hexanes) to give 1.41 g (86%) of 7a.

Based on 1H NMR spectra, trichloroacetamides 7a, 7b, 7d–p exist as a mixture of two rotamers, which do not interconvert easily at room temperature.

N-Benzyl-2,2,2-trichloro-N-[2-(phenylethynyl)phenyl]acetamide 7a. Colorless crystals; mp 123–124 °C (from ethyl acetate–hexanes); yield: 86 %; 1H NMR (400 MHz, CDCl$_3$): δ 4.30 (d, J = 12.4 Hz, 1H, NCH), 5.81 (d, J = 12.4 Hz, 1H, NCH), 6.97 (d, J = 7.9 Hz, 1H, ArH), 7.16 (td, J = 7.9, 1.3 Hz, 1H, ArH), 7.20–7.35 (m, 6H, ArH), 7.36–7.41 (m, 3H, ArH), 7.51–7.56 (m, 2H, ArH), 7.58 (dd, J = 7.9, 1.3 Hz, 1H, ArH); IR (KBr): 2950, 1670, 1590, 1450, 1245 cm$^{-1}$; HRMS(EI) calcld for C$_{18}$H$_{13}$Cl$_3$NO: m/z 427.0297 [M$^+$], found: m/z 427.0297.

2,2,2-Trichloro-N-ethyl-N-[2-(phenylethynyl)phenyl]acetamide 7b. Yellow oils; yield: 94%; 1H NMR (400 MHz, CDCl$_3$): δ 1.23 (t, J = 6.8 Hz, 3H, CH$_3$), 3.45 (bs, 1H, NCH), 4.37 (bs, 1H, NCH), 7.31–7.42 (m, 6H, ArH), 7.46–7.52 (m, 2H, ArH), 7.61 (brs, 1H, ArH); IR (neat): 2935, 1680, 1600, 1450, 1280 cm$^{-1}$; HRMS(EI) calcld for C$_{18}$H$_{13}$Cl$_3$NO: m/z 366.0213 [MH$^+$], found: m/z 366.0203.

2,2,2-Trichloro-N-[2-(phenylethynyl)phenyl]acetamide 7c. Colorless crystals; mp 104–105 °C (from ethyl acetate–hexanes); yield: 88%; 1H NMR (400 MHz, CDCl$_3$): δ 7.20 (t, J = 7.9 Hz, 1H, ArH), 7.35–7.46 (m, 4H, ArH), 7.51–7.55 (m, 2H, ArH), 7.57 (d, J = 7.9 Hz, 1H, ArH), 8.38 (d, J = 7.9 Hz, 1H, ArH), 9.45 (s, 1H, NH); 13C NMR (100.6 MHz, CDCl$_3$): δ 83.3 (s), 93.0 (s), 113.6 (s), 119.0 (d), 121.9 (s), 125.1 (d), 128.6 (2 × d), 129.2 (d), 129.9 (d), 131.5 (2 × d), 131.7 (d), 131.7 (s), 159.0 (s); IR (KBr): ν = 3360, 1720, 1580, 1450, 755 cm$^{-1}$; HRMS(EI) calcld for C$_{18}$H$_{13}$Cl$_3$NO: m/z 336.9828 [M$^+$], found: m/z 336.9828.

N-Benzyl-2,2,2-trichloro-N-[4-methyl-2-(phenylethynyl)phenyl]acetamide 7d. Colorless crystals; mp 74–75 °C (from ethyl acetate–hexanes); yield: 94%; 1H NMR (400 MHz, CDCl$_3$): δ 2.34 (s, 3H, CH$_3$), 4.26 (d, J = 14.0 Hz, 1H, NCH), 5.79 (d, J = 14.0 Hz, 1H, NCH), 6.84 (d, J = 8.2 Hz, 1H, ArH), 6.96 (dd, J = 8.2, 1.6 Hz, 1H, ArH), 7.20–7.30 (m, 5H, ArH), 7.34–7.42 (m, 4H, ArH), 7.49–7.56 (m, 2H, ArH); IR (KBr): ν = 2950, 1670, 1600, 1245, 835 cm$^{-1}$; HRMS(EI) calcld for C$_{21}$H$_{15}$Cl$_3$NO: m/z 441.0454 [M$^+$], found: m/z 441.0456.

N-Benzyl-2,2,2-trichloro-N-[4,5-dimethyl-2-(phenylethynyl)phenyl]acetamide 7e. Yellow oils; yield: 91%; 1H NMR (400 MHz, CDCl$_3$): δ 2.11 (s, 3H, CH$_3$), 2.25 (s, 3H, CH$_3$), 4.28 (d, J = 13.8 Hz, 1H, NCH), 5.74 (d, J = 13.8 Hz, 1H, NCH), 6.73 (s, 1H, ArH), 7.20–7.30 (m, 5H, ArH), 7.32–7.40 (m, 4H, ArH), 7.48–7.53 (m, 2H, ArH); IR (neat): 2920, 1680, 1595, 1455, 1245 cm$^{-1}$; HRMS(EI) calcld for C$_{21}$H$_{15}$Cl$_3$NO: m/z 455.0611 [M$^+$], found: m/z 455.0616.

N-Benzyl-2,2,2-trichloro-N-[4-chloro-2-(phenylethynyl)phenyl]acetamide 7f. Yellow oils; yield: 95%; 1H NMR (400 MHz, CDCl$_3$): δ 4.25 (brs, 1H, NCH), 5.81 (d, J = 14.4 Hz, 1H, NCH), 6.86 (d, J = 8.6 Hz, 1H, ArH), 7.11 (dd, J = 8.6, 2.4 Hz, 1H, ArH), 7.18–7.23 (m, 2H, ArH), 7.24–7.30 (m, 3H, ArH), 7.36–7.43 (m, 3H, ArH), 7.50–7.56 (m, 2H, ArH); IR (KBr): 2930, 1670, 1590, 1450, 1245 cm$^{-1}$; HRMS(EI) calcld for C$_{18}$H$_{13}$Cl$_3$NO: m/z 459.0457 [M$^+$], found: m/z 459.0457.
N-Benzyloctyl-2-(hex-1-ynyl)phenylacetamide 7n. Yellow oils; yield: 99%; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 6.09 (t, \(J = 7.8\) Hz, 2H, CH\(_2\)), 1.49 (sextet, \(J = 7.8\) Hz, 2H, CH\(_2\)), 1.61 (quintet, \(J = 7.8\) Hz, 2H, CH\(_2\)), 2.46 (t, \(J = 7.8\) Hz, 2H, CH\(_2\)), 4.20 (d, \(J = 14.0\) Hz, 1H, NCH), 5.74 (d, \(J = 14.0\) Hz, 1H, NCH), 5.84 (d, \(J = 7.4\) Hz, 1H, ArH), 7.07 (t, \(J = 7.4\) Hz, 1H, ArH), 7.15–7.32 (m, 6H, ArH), 7.44 (dd, \(J = 7.4\), 0.8 Hz, 1H, ArH); IR (neat): 2935, 1680, 1455, 1235 cm\(^{-1}\); HRMS (EI) calcd for C\(_{23}\)H\(_{24}\)BrNO: m/z 457.0403 [M\(^+\)]; found: m/z 457.0399.

N-Benzyloctyl-2-(2-phenylethynyl)phenylacetamide 7o. Colorless crystals; mp 79–81 °C (from ethyl acetate–hexanes); yield: 83%; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 4.28 (d, \(J = 12.2\) Hz, 1H, NCH), 5.78 (d, \(J = 12.2\) Hz, 1H, NCH), 6.96 (d, \(J = 7.4\) Hz, 1H, ArH), 7.15 (td, \(J = 7.4\), 1.2 Hz, 1H, ArH), 7.18–7.35 (m, 8H, ArH), 7.56 (d, \(J = 7.4\) Hz, 1H, ArH), 7.57 (s, 1H, ArH); IR (KBr): 2950, 1670, 1595, 1455, 1245 cm\(^{-1}\); HRMS (EI) calcd for C\(_{23}\)H\(_{22}\)Cl\(_2\)NO: m/z 432.9862 [M\(^+\)]; found: m/z 432.9861.
Typical procedure for the preparation of N-(alkynylyphenyl)-2,2,2-tribromoacetamides 9:
A solution of 2,2,2-tribromocarboxylic acid (1.19 g, 3.74 mmol) and phosphorus oxychloride (751 mg, 3.74 mmol) in toluene (20 mL) was stirred in an ice-water bath. After stirred for 1 h, N-benzyl-2-(phenylethynyl)phenylamine (703 mg, 2.48 mmol) and triethylamine (525 mg, 5.19 mmol) was added. The resulting solution was stirred in an ice-water bath for another 5 h. The reaction mixture was then diluted with 100 mL of ethyl acetate, washed with water (3 × 50 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was chromatographed over 20 g of silica gel (eluted with 1:20 ethyl acetate–hexanes) to give 1.28 g (92%) of 9a.

Based on ¹H NMR spectra, tribromoacetamides 9a–i exist as a mixture of two rotamers, which do not interconvert easily at room temperature.

N-Benzyl-2,2,2-tribromo-N-[2-(phenylethynyl)phenyl]acetamide 9a. White solids; mp 91–92 °C (from ethyl acetate–hexanes); yield: 92%; "H NMR (400 MHz, CDCl₃): δ = 4.32 (brs, 1H, NCH), 5.85 (d, J = 14.4 Hz, 1H, NCH), 7.10 (brs, 1H, ArH), 7.17 (td, J = 7.7, 1.2 Hz, 1H, ArH), 7.21–7.33 (m, 6H, ArH), 7.34–7.42 (m, 3H, ArH), 7.52–7.62 (m, 3H, ArH); IR (KBr): ν = 3060, 1650, 1450, 1240, 760 cm⁻¹; HRMS (ESI) calcd for C₂₃H₁₉Br₃NO: m/z 593.8465 [MH⁺], found: m/z 593.8460.

N-Benzyl-2,2,2-tribromo-N-[4-methyl-2-(phenylethynyl)phenyl]acetamide 9b. Colorless oils; yield: 88%; "H NMR (400 MHz, CDCl₃): δ = 2.34 (s, 3H, CH₃), 4.28 (brs, 1H, NCH), 5.84 (d, J = 14.4 Hz, 1H, NCH), 6.89–7.05 (m, 2H, ArH), 7.22–7.32 (m, 5H, ArH), 7.35–7.43 (m, 4H, ArH), 7.52–7.60 (m, 2H, ArH); IR (neat): 2920, 1670, 1400, 1240 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₁Br₃NO: m/z 573.9011 [MH⁺], found: m/z 573.9014.

N-Benzyl-2,2,2-tribromo-N-[4-chloro-2-(phenylethynyl)phenyl]acetamide 9c. Yellow oils; yield: 94%; "H NMR (400 MHz, CDCl₃): δ = 4.31 (brs, 1H, NCH), 5.85 (d, J = 14.4 Hz, 1H, NCH), 6.99 (brs, 1H, ArH), 7.12 (dd, J = 8.4, 2.4 Hz, 1H, ArH), 7.20–7.33 (m, 5H, ArH), 7.36–7.41 (m, 3H, ArH), 7.52–7.58 (m, 3H, ArH); IR (neat): 2950, 1670, 1600, 1495, 1235 cm⁻¹; HRMS (ESI) calcd for C₂₂H₁₉Br₃ClNO: m/z 593.8465 [MH⁺], found: m/z 593.8466.

N-Benzyl-2,2,2-tribromo-N-[4-bromo-2-(phenylethynyl)phenyl]acetamide 9d. Yellow oils; yield: 92%; "H NMR (400 MHz, CDCl₃): δ = 4.35 (brs, 1H, NCH), 5.84 (d, J = 14.4 Hz, 1H, NCH), 6.91 (d, J = 7.6 Hz, 1H, ArH), 7.22–7.30 (m, 6H, ArH), 7.34–7.42 (m, 3H, ArH), 7.52–7.58 (m, 2H, ArH), 7.71 (d, J = 2.0 Hz, 1H, ArH); IR (neat): 3030, 1670, 1600, 1495, 1235 cm⁻¹; HRMS (ESI) calcd for C₂₃H₁₈Br₃NO: m/z 637.7960 [MH⁺], found: m/z 637.7952.

N-Benzyl-2,2,2-tribromo-N-[4-methoxy carbonyl-2-(phenylethynyl)phenyl]acetamide 9e. Colorless oils; yield: 84%; "H NMR (400 MHz, CDCl₃): δ = 3.33 (s, 3H, OCH₃), 4.46 (brs, 1H, NCH), 5.86 (d, J = 14.0 Hz, 1H, NCH), 7.14 (d, J = 7.8 Hz, 1H, ArH), 7.21–7.29 (m, 5H, ArH), 7.36–7.43 (m, 3H, ArH), 7.54–7.61 (m, 2H, ArH), 7.81 (dd, J = 7.8, 1.9 Hz, 1H, ArH), 8.25 (d, J = 1.9 Hz, 1H, ArH); IR (neat): 2950, 1725, 1670, 1600, 1255 cm⁻¹; HRMS(ESI) calcd for C₂₃H₁₈Br₃NO: m/z 617.8909 [MH⁺], found: m/z 617.8898.

N-Benzyl-2,2,2-tribromo-N-[2-(4-methoxyphenyl)ethyl]acetamide 9f. Colorless oils; yield: 92%; "H NMR (400 MHz, CDCl₃): δ = 2.39 (s, 3H, CH₃), 4.34 (brs, 1H, NCH), 5.85 (d, J = 14.4 Hz, 1H, NCH), 7.09 (brs, 1H, ArH), 7.15 (t, J = 7.4 Hz, 1H, ArH), 7.19 (d, J = 8.0 Hz, 2H, ArH), 7.22–7.33 (m, 6H, ArH), 7.46 (d, J = 8.0 Hz, 2H, ArH), 7.56 (d, J = 7.4 Hz, 1H, ArH); IR (neat): 2920, 1670, 1450, 1240, 815 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₀Br₂NO: m/z 593.9011 [MH⁺], found: m/z 593.9005.

N-Benzyl-2,2,2-tribromo-N-[2-(4-methoxyphenyl)ethyl]acetamide 9g. Colorless oils; yield: 80%; "H NMR (400 MHz, CDCl₃): δ = 3.83 (s, 3H, OCH₃), 4.34 (brs, 1H, NCH), 5.84 (d, J = 14.0 Hz, 1H, NCH), 6.90 (d, J = 8.8 Hz, 2H, ArH), 7.08 (brs, 1H, ArH), 7.13 (t, J = 7.6 Hz, 1H, ArH), 7.19–7.30 (m, 6H, ArH), 7.50 (d, J = 8.8 Hz, 2H, ArH), 7.54 (d, J = 7.6 Hz, 1H, ArH); IR (neat): 2935, 1660, 1605, 1455, 1255 cm⁻¹; HRMS (ESI) calcd for C₂₃H₁₈Br₂NO: m/z 589.8960 [MH⁺], found: m/z 589.8944.

N-Benzyl-2,2,2-tribromo-N-[2-(4-chlorophenyl)ethyl]acetamide 9h. Brown oils; yield: 93%; "H NMR (400 MHz, CDCl₃): δ = 4.36 (brs, 1H, NCH), 5.80 (d, J = 14.0 Hz, 1H, NCH), 7.09 (brs, 1H, ArH), 7.17 (td, J = 7.5, 1.1 Hz, 1H, ArH), 7.21–7.31 (m, 6H, ArH), 7.34 (d, J = 8.4 Hz, 2H, ArH), 7.48 (d, J = 8.4 Hz, 2H, ArH), 7.55 (d, J = 7.5 Hz, 1H, ArH); IR (neat): ν = 3030, 1670, 1595, 1450, 1240 cm⁻¹; HRMS (ESI) calcd for C₂₃H₁₈Br₂ClNO: m/z 593.8465 [MH⁺], found: m/z 593.8460.
A-BenzyI-2,2,2-tribromo-N-(2-[(4-bromophenyl)ethynyl]phenyl)acetamide 9i. Brown oils; yield: 86%; 1H NMR (400 MHz, CDCl$_3$): δ 4.32 (brs, 1H, NCH), 5.81 (d, $J = 14.0$ Hz, 1H, NCH), 7.10 (brs, 1H, ArH), 7.19 (t, $J = 7.5$ Hz, 1H, ArH), 7.22–7.34 (m, 6H, ArH), 7.41 (d, $J = 8.4$ Hz, 2H, ArH), 7.52 (d, $J = 8.4$ Hz, 2H, ArH), 7.56 (d, $J = 7.5$ Hz, 1H, ArH); IR (neat): 3030, 1670, 1595, 1495, 1240 cm$^{-1}$; HRMS(ESI) calcd for C$_{23}$H$_{16}$Br$_4$NO: m/z 637.7960 [MH$^+$], found: m/z 637.7949.

3) Copies of 1H and 13C NMR spectra for the starting N-(2-alkynylphenyl) trichloroacetamides 7 N-(2-alkynylphenyl) tribromoacetamides 9.
1 H NMR spectra of 7a

1 H NMR spectra of 7b
\(^1\)H & \(^{13}\)C NMR spectra of 7c
$^1{}$H NMR spectra of 7d

$^1{}$H NMR spectra of 7e
1H NMR spectra of 7f

1H NMR spectra of 7g
1H NMR spectra of 7h

1H NMR spectra of 7i
1H NMR spectra of 7j

1H NMR spectra of 7k
1H NMR spectra of 7l

1H NMR spectra of 7m
1H NMR spectra of 7n

1H NMR spectra of 7o
1H NMR spectra of $7p$

1H NMR spectra of $9a$
1H NMR spectra of 9b

1H NMR spectra of 9c
1H NMR spectra of 9d

1H NMR spectra of 9e
1H NMR spectra of 9f

![H NMR spectrum of 9f](image)

1H NMR spectra of 9g

![H NMR spectrum of 9g](image)
1H NMR spectra of 9h

1H NMR spectra of 9i
4) Copies of 1H and 13C NMR spectra for 4-benzoylquinolin-2(1H)-ones 8 and 10.
1H & 13C NMR spectra of 8b
1H & 13C NMR spectra of 8d
1H & 13C NMR spectra of 8e

![NMR Spectra Image]
1H & 13C NMR spectra of 8f
1H & 13C NMR spectra of 8g
1H & 13C NMR spectra of 8h
1H & 13C NMR spectra of 8i
1H & 13C NMR spectra of 8j
1H & 13C NMR spectra of 8k
1H & 13C NMR spectra of 8I
1H & 13C NMR spectra of $8m$
1H & 13C NMR spectra of 8n
1H & 13C NMR spectra of 8o
1H & 13C NMR spectra of 8p
1H & 13C NMR spectra of 10a
1H & 13C NMR spectra of 10b
1H & 13C NMR spectra of 10c
1H & 13C NMR spectra of 10d
1H & 13C NMR spectra of 10e
1H & 13C NMR spectra of 10f
1H & 13C NMR spectra of 10g
1H & 13C NMR spectra of 10h
1H & 13C NMR spectra of 10i