Supplementary Information for:

Non-invasive analysis of a protein-templated dynamic combinatorial library by 19F NMR

Alexander G. Ekström, Jue T. Wang, Juraj Bella, and Dominic J. Campopiano

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK.

The raw data files associated with this paper can be accessed here.

http://dx.doi.org/10.7488/ds/2436

Contents:

Non-invasive DCL rationale 2
19F NMR sensitivity 3
Nucleophilic catalysis of NAH exchange 4
Inhibitory activity of NAH DCL members 7
Numbering of compounds 8
NAH A1 1H NMR 9
NAH A1 13C NMR 10
NAH A1 19F NMR 11
NAH A2 1H NMR 12
NAH A2 13C NMR 13
NAH A2 19F NMR 14
NAH A3 1H NMR 15
NAH A3 13C NMR 16
NAH A3 19F NMR 17
NAH A4 1H NMR 18
NAH A4 13C NMR 19
NAH A4 19F NMR 20
NAH A5 1H NMR 21
NAH A5 13C NMR 22
NAH A5 19F NMR 23
Non-invasive DCL rationale

Methods of protein removal from a 3-membered DCL templated by ecFabH

Figure S1 - HPLC chromatograms showing four aliquots of a 3-membered DCL containing NAHs A2 (6.23 mins), A5 (7.59 mins), A4 (12.52 mins) where ecFabH was removed by different methods prior to HPLC infusion.

The library was assembled with each of the hydrazides 2, 4 and 5, and aldehyde A at a final concentration of 200 μM, buffered at pH 6.2 using 50 mM sodium phosphate with 50% D2O, 10% DMSO, 50 mM NaCl and 3 mM 4-APA. The library cocktail also contained either 200 μM ecFabH or an equivalent volume of enzyme purification buffer. The libraries were equilibrated at RT overnight and the histidine affinity tagged protein was removed by either affinity chromatography (HisTrap 1 mL GE Healthcare Ni2+-affinity chromatography column pre-equilibrated in purification buffer), ultrafiltration (30 kDa MWCO Sartorius micro-spin filter) or injected directly onto the column without protein removal (note: this impacted the
performance of the C18(2) column, requiring several gradient washes to restore optimal column back pressure). The control mixture was not templated by ecFabH and was injected directly.

Column: Luna 5μ C18(2) 50 mm x 4.6 mm, flow rate 1 mL/min, 30 °C

Solvents: A = Water (0.1% formic acid), B = Acetonitrile (0.1% formic acid)

Method: 5% B for 1 minute, 5-95% B over 7 minutes, 95% B for 1 minute, re-equilibrate at 5% B for 5 minutes.

19F NMR sensitivity

\[
\begin{align*}
\text{19F NMR (470 MHz, DMSO)} & \quad \delta -110.58 \\
\text{19F NMR (470 MHz, DMSO)} & \quad \delta -110.75
\end{align*}
\]

Figure S2 - showing two very closely related NAHs with individually resolved 19F NMR signals.
Nucleophilic catalysis of NAH exchange
NAH formation from 1-membered library

Figure S3 - HPLC chromatograms used to monitor the formation of NAH A4 over time. This example used NAH equilibration catalyst 4-APA at 1 mM. The area under each peak was used to plot a time course of the reaction at different concentrations of nucleophilic catalyst (see figure 3 in the main text).

HPLC chromatograms were collected at hourly intervals over a 9 h period. The following cocktail was prepared to characterise the catalysis of aniline and 4-APA at different concentrations:

2-Fluoro-5-formylbenzoic acid A (200 μM), 4-tert-butylbenzohydrazide 4 (200 μM), aniline (0 mM, 0.1 mM, 1 mM, 10 mM) or 4-aminophenylalanine (0 mM, 0.1 mM, 1 mM, 3 mM, 10 mM), sodium phosphate buffer (50 mM, pH 6.2), 10% DMSO.

Column: Luna 5μ C18(2) 50 mm x 4.6 mm, flow rate 1 mL/min, 30 °C

Solvents: A = Water (0.1% formic acid), B = Acetonitrile (0.1% formic acid)

Method: 5% B for 1 minute, 5-95% B over 7 minutes, 95% B for 1 minute, re-equilibrate at 5% B for 5 minutes.
NAH formation from 3-membered forward library

Figure S4 - HPLC chromatograms were collected every 60 minutes up to 9 h. The integral under each peak was calculated using LabSolutions (Shimadzu) and plotted as a percentage of total concentration for each time point. The following cocktail was prepared to characterise the catalysis of the forward reaction 4-APA at 3 mM and 10 mM:

- 2-Fluoro-5-formylbenzoic acid A (200 μM),
- 3-methoxybenzhydrazide 3 (200 μM),
- 4-tert-butylbenzhydrazide 4 (200 μM),
- 4-hydroxy-3-methoxybenzhydrazide 5 (200 μM),
- 4-aminophenylalanine (3 mM or 10 mM),
- sodium phosphate buffer (50 mM, pH 6.2),
- 10% DMSO.

Column: Luna 5μ C18(2) 50 mm x 4.6 mm, flow rate 1 mL/min, 30 °C

Solvents: A = Water (0.1% formic acid), B = Acetonitrile (0.1% formic acid)

Method: 5% B for 1 minute, 5-95% B over 7 minutes, 95% B for 1 minute, re-equilibrate at 5% B for 5 minutes.
NAH formation from 3-membered reverse library

Figure S5 - HPLC chromatograms were collected every 60 minutes up to 9 h. The integral under each peak was calculated using LabSolutions (Shimadzu) and plotted as a percentage of total concentration for each time point. The following cocktail was prepared to characterise the catalysis of the forward reaction 4-APA at 3 mM and 10 mM:

NAH A5 (200 μM), 4-tert-butylbenzhydrazide 4 (200 μM), 3-methoxybenzhydrazide 3 (200 μM), 4-aminophenylalanine (3 mM or 10 mM), sodium phosphate buffer (50 mM, pH 6.2), 10% DMSO.

Column: Luna 5μ C18(2) 50 mm x 4.6 mm, flow rate 1 mL/min, 30 °C

Solvents: A = Water (0.1% formic acid), B = Acetonitrile (0.1% formic acid)
Method: 5% B for 1 minute, 5-95% B over 7 minutes, 95% B for 1 minute, re-equilibrate at 5% B for 5 minutes.

Inhibitory activity of NAH DCL members

Figure S6 - The activity of FabH was quantified by 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) assay with the following procedure. An assay cocktail was prepared from DTNB (1 mL, 4 mM in 50 mM NH₄OAc), HEPES buffer (1 mL, 1 M, pH 8.0) and ddH₂O (8 mL). The assay was run in 96-well plate format with the following protocol (the following bracketed figures refer to final concentrations): 100 μL DTNB assay cocktail, 25 μL ecFabH (0.63 μM), 25 μL Acetyl-CoA (375 μM), 25 μL Malonyl-CoA (375 μM), 5 μL ddH₂O, 20 μL NAH A1-A5 (3 mM) or HR45 (200 μM) in DMSO or DMSO control. Following 20 mins incubation at 37 °C, the reaction was initiated by the addition of malonyl-CoA and followed by monitoring absorbance change at 412 nm over 20 mins at 37 °C. The DMSO concentration was maintained at 10% to aid the solubility of the NAH compounds.
Synthetic Chemistry
Numbering of N-acylhydrazones

A1 - 2-fluoro-5-[(1E/Z)-[(pyridin-4-yl-formamido)imino]methyl]benzoic acid

A2 - 2-fluoro-5-[(1E/Z)-[(pyridin-3-ylformamido)imino]methyl]benzoic acid

A4 - 5-[(1E/Z)-[[4-tert-butylphenyl]formamido]imino]methyl]-2-fluorobenzoic acid

A5 - 2-fluoro-5-[(1E/Z)-[[4-hydroxy-3-methoxyphenyl]formamido]imino]methyl] benzoic acid
NAH A1 1H NMR
NAH A1 13C NMR

![Graph of NAH A1 13C NMR](image-url)

Local path: /path/to/graphs/13C_NMR.png

Archive details: DCA/JueTheresa/JueTheresa_13C_NMR.png
NAH A1 19F NMR
NAH A2 13C NMR

![Graph Image]

localpath: pro500 /vps/ignpp/v3.2/data/DCA/nmr/NovV-00799/11/
archive details: DCA/Wang JueTheresa/Wang JueTheresa_JTW017_131115_3H-13C_pr500_NovV-00799
NAH A2 19F NMR
NAH A3 13C NMR
NAH A3 19F NMR
NAH A4 1H NMR
NAH A4 19F NMR
NAH A5 1H NMR
NAH A5 13C NMR
NAH A5 19F NMR