Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Aminative Umpolung Cyclization for Synthesis of Chiral Exocyclic Vicinal Diamines

Feng Liu, Guoqing Zhao, Weiqi Cai, Dongfang Xu, Baoguo Zhao*

The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China zhaobg2006@shnu.edu.cn

Supporting Information

Table of Contents

General methods	S-2
Procedure for synthesis of compounds 6a-j	S-2
Procedure for synthesis of compound 6k	S-7
Procedure for aminative Umpolung cyclization	S-9
Synthesis of 11a and 7a	S-9
Characterization data	S-10
The X-ray structure of compound (S, R, R) -10b	S-22
The X-ray structure of compound (<i>S</i> , <i>S</i> , <i>S</i>) -10b	S-24

General Methods

All commercially available reagents were used without further purification unless otherwise stated. Dichloromethane was freshly distilled from CaH₂. Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded on a 400 or 600 MHz NMR spectrometer and ¹³C NMR spectra were recorded on a 100 MHz NMR spectrometer. ¹H shifts were referenced to CDCl₃ at 7.26 ppm, ¹³C shifts were referenced to CDCl₃ at 77.16 ppm. IR spectra were recorded on a FT-IR spectrometer.

A mixture of 2-bromobenzaldehyde **12** (10 mmol), bis(pinacolato)diboron **13** (1.32 g, 5.2 mmol), K_2CO_3 (2.07 g, 15 mmol), and $Pd(PPh_3)_4$ (0.347 g, 0.30 mmol) in 1,4-dioxane (25 mL) was stirred under N₂ atmosphere at room temperature for 20 min and then at 80 °C for 24 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure to remove most of the solvent. Water (15 mL)

was added. The resulting suspend was extracted with EtOAc (30 mL \times 3). The combined organic layers were dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash column chromatography (petroleum ether / ethyl acetate = 30:1) to give the coupling product **14** (32-86% yield). To a solution of dialdehyde **14** (5.0 mmol) in anhydrous DCM (12 mL) was added (*S*)-*tert*-butylsulfinamide (0.61 g, 5.0 mmol) and Cs₂CO₃ (2.45 g, 7.5 mmol). The reaction mixture was stirred at 50 °C for 12 h. Then the reaction mixture was cooled to room temperature, filtered, concentrated under reduced pressure, and purified by flash column chromatography (petroleum ether / ethyl acetate = 10:1) to give the product **6** (29-90% yield based on **14**).

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1 H), 8.40 (s, 0.45 H for minor isomer), 8.38 (s, 0.55 H for major isomer), 8.16-8.10 (m, 1 H), 8.03 (d, *J* = 7.6 Hz, 1 H), 7.64 (t, *J* = 7.2 Hz, 1 H), 7.60-7.50 (m, 3 H), 7.36-7.27 (m, 2 H), 1.17 (s, 4.1 H for minor isomer), 1.11 (s, 4.9 H for major isomer).

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 0.44 H for minor isomer), 9.70 (s, 0.56 H for major isomer), 8.294 (s, 0.44 H for minor isomer), 8.285 (s, 0.56 H for major isomer), 8.16-8.10 (m, 1 H), 8.09-8.02 (m, 1 H), 7.33-7.24 (m, 2 H), 7.08-6.95 (m, 2 H), 1.15 (s, 4.0 H for minor isomer), 1.10 (s, 5.0 H for major isomer); HRMS *m/z* Calcd. For C₁₈H₁₇F₂NO₂SNa (M + Na⁺): 372.0846; Found: 372.0842.

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.72 (d, J = 2.8 Hz, 0.44 H for minor isomer), 9.70 (d, J = 2.8 Hz, 0.56 H for major isomer), 8.31 (d, J = 2.0 Hz, 0.44 H for minor isomer), 8.29 (d, J = 2.0 Hz, 0.56 H for major isomer), 7.86-7.84 (m, 0.44 H for minor isomer), 7.83-7.82 (m, 0.56 H for major isomer), 7.72 (t, J = 2.4 Hz, 0.44 H for minor isomer), 7.70 (t, J = 2.4 Hz, 0.56 H for major isomer), 7.39-7.32 (m, 1 H), 7.32-7.27 (m, 3 H), 1.20 (s, 4.0 H for minor isomer), 1.15 (s, 5.0 H for major isomer); HRMS m/z Calcd. For C₁₈H₁₈F₂NO₂S (M + H⁺): 350.1026; Found: 350.1019.

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1 H), 8.39 (s, 0.42 H for minor isomer), 8.38 (s, 0.42 H for minor isomer), 8.37 (s, 0.58 H for major isomer), 8.36 (s, 0.58 H for major isomer), 8.31 (s, 0.42 H for minor isomer), 8.30 (s, 0.58 H for major isomer), 7.96-7.90 (m, 1 H), 7.88-7.82 (m, 1 H), 7.48-7.45 (m, 2 H), 1.16 (s, 3.8 H for minor isomer), 1.09 (s, 5.2 H for major isomer); HRMS *m*/*z* Calcd. For C₂₀H₁₈F₆NO₂S (M + H⁺): 450.0962; Found: 450.0962.

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 0.42 H for minor isomer), 9.71 (s, 0.58 H for major isomer), 8.29 (s, 1 H), 8.03 (d, *J* = 8.4 Hz, 0.42 H for minor isomer),

8.02 (d, J = 8.4 Hz, 0.58 H for major isomer), 7.96 (d, J = 8.4 Hz, 0.42 H for minor isomer), 7.95 (d, J = 8.4 Hz, 0.58 H for major isomer), 7.56-7.55 (m, 1 H), 7.54-7.53 (m, 1 H), 7.32 (d, J = 2.0 Hz, 1 H), 7.30 (d, J = 2.0 Hz, 0.58 H for major isomer), 7.28 (d, J = 2.0 Hz, 0.42 H for minor isomer), 1.15 (s, 3.8 H for minor isomer), 1.08 (s, 5.2 H for major isomer); HRMS m/z Calcd. for C₁₈H₁₈Cl₂NO₂S (M + H⁺): 382.0435; Found: 382.0429.

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 0.45 H for minor isomer), 9.72 (s, 0.55 H for major isomer), 8.31 (s, 0.45 H for minor isomer), 8.28 (s, 0.55 H for major isomer), 8.13-8.09 (m, 1 H), 8.01-7.98 (m, 1 H), 7.65-7.59 (m, 1 H), 7.57-7.53 (m, 1 H), 7.25-7.20 (m, 2 H), 1.20 (s, 4.1 H for minor isomer), 1.14 (s, 4.9 H for major isomer); HRMS *m*/*z* Calcd. for C₁₈H₁₇Cl₂NO₂SNa (M + Na⁺): 404.0255; Found: 404.0253.

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 0.45 H for minor isomer), 9.70 (s, 0.55 H for major isomer), 8.34 (s, 0.45 H for minor isomer), 8.33 (s, 0.55 H for major isomer), 8.01 (d, *J* = 8.0 Hz, 0.45 H for minor isomer), 8.00 (d, *J* = 8.0 Hz, 0.55 H for major isomer), 7.92 (d, *J* = 8.0 Hz, 0.45 H for minor isomer), 7.91 (d, *J* = 8.0 Hz, 0.55 H for major isomer), 7.36-7.30 (m, 2 H), 7.11 (s, 1 H), 7.08 (s, 0.55 H for major isomer), 7.07 (s, 0.45 H for minor isomer), 2.45-2.41 (m, 6 H), 1.17 (s, 4.1 H for minor isomer), 1.10 (s, 4.9 H for major isomer); HRMS *m*/*z* Calcd. for C₂₀H₂₄NO₂S

(M + H⁺): 342.1528; Found: 342.1532.

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 0.45 H for minor isomer), 9.76 (s, 0.55 H for major isomer), 8.39 (s, 0.45 H for minor isomer)), 8.36 (s, 0.55 H for major isomer), 7.95 (s, 0.45 H for minor isomer), 7.93 (s, 0.55 H for major isomer), 7.82 (s, 1 H), 7.43 (d, *J* = 8.0 Hz, 1 H), 7.37 (d, *J* = 8.0 Hz, 1 H), 7.22-7.13 (m, 2 H), 2.48 (s, 3 H), 2.45 (s, 3 H), 1.20 (s, 4.1 H for minor isomer), 1.14 (s, 4.9 H for major isomer); HRMS *m*/*z* Calcd. for C₂₀H₂₃NO₂SNa (M + Na⁺): 364.1347; Found: 364.1341.

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 0.46 H for minor isomer), 9.72 (s, 0.54 H for major isomer), 8.38 (s, 0.46 H for minor isomer), 8.35 (s, 0.54 H for major isomer), 7.66-7.63 (m, 1 H), 7.501 (s, 0.54 H for major isomer), 7.497 (s, 0.46 H for minor isomer), 7.25-7.15 (m, 3 H), 7.13-7.08 (m, 1 H), 3.92 (s, 3 H), 3.90 (s, 3 H), 1.21 (s, 4.1 H for minor isomer), 1.16 (s, 4.9 H for major isomer); HRMS *m*/*z* Calcd. for C₂₀H₂₄NO₄S (M + H⁺): 374.1426; Found: 374.1418.

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 0.45 H for minor isomer), 9.57 (s, 0.55 H for major isomer), 8.31 (s, 0.45 H for minor isomer), 8.28 (s, 0.55 H for major isomer), 7.65 (s, 1 H), 7.52 (s, 0.45 H for minor isomer), 7.51 (s, 0.55 H for major isomer), 6.79 (s, 0.55 H for major isomer), 6.77 (s, 0.45 H for minor isomer), 6.74 (s, 0.55 H for major isomer), 6.70 (s, 0.45 H for minor isomer), 4.01 (s, 3 H), 3.99 (s, 1.3 H for minor isomer), 3.98 (s, 1.7 H for major isomer), 3.94 (s, 3 H), 3.93 (s, 1.3 H for minor isomer), 3.91 (s, 1.7 H for major isomer), 1.20 (s, 4.1 H for minor isomer), 1.17 (s, 4.9 H for major isomer); HRMS *m*/*z* Calcd. for C₂₂H₂₇NO₆SNa (M + Na⁺): 456.1457; Found: 456.1453.

Procedure for Synthesis of Compound 6k (Table 2)

Step i. Synthesis of dialdehyde 17

Α mixture of 1-bromo-2-naphthaldehyde 15 (1.0)4.26 mmol), g, (2-formylnaphthalen-1-yl)boronic acid 16 (1.28 g, 6.38 mmol), Pd₂(dba)₃ (0.10 g, 0.109 mmol), KF (0.74)12.78 mmol) and g,

2-Dicyclohexylphosphino-2',6'-diisopropoxybiphenyl (RuPhos) (0.10 g, 0.215 mmol) in 1,4-dioxane (5.0 mL) and H₂O (4 mL) was vigorously stirred under N₂ atmosphere at room temperature for 20 min and then at 100 °C for 21 hours. The reaction mixture was cooled to room temperature and extracted with EtOAc (30 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered, concentrated under reduced pressureand, and purified by column chromatography (petroleum ether / ethyl acetate = 30:1) to give the product **17** as a yellow solid (0.687 g, 52% yield).

17: Yellow solid; ¹H NMR (600 MHz, CDCl₃) δ 9.62 (s, 2 H), 8.21 (d, J = 8.4 Hz, 2 H), 8.13 (d, J = 8.4 Hz, 2 H), 8.02 (d, J = 8.4 Hz, 2H), 7.64 (dd, J = 8.4, 6.6 Hz, 2 H), 7.38 (t, J = 7.8 Hz, 2 H), 7.23 (d, J = 8.4 Hz, 2 H).

Step ii. Synthesis of dialdehyde 6k

A mixture of compound **17** (0.476 g, 1.526 mmol), (*S*)-*tert*-butylsulfinamide (0.185 g, 1.526 mmol) and Cs_2CO_3 (0.746 g, 2.289 mmol) in anhydrous DCM (10 mL) was stirred at 50 °C for 36 h. The reaction mixture was cooled to room temperature, filtered, concentrated under reduced pressure, and purified by column chromatography (petroleum ether / ethyl acetate = 10:1) to give the product **6k** as a yellow solid (0.274 g, 43%).

6k: ¹H NMR (400 MHz, CDCl₃) δ 9.61 (s, 0.50 H), 9.59 (s, 0.50 H), 8.32 (d, J = 8.4 Hz, 0.50 H), 8.29 (d, J = 8.4 Hz, 0.50 H), 8.21-8.15 (m, 2 H), 8.12-8.06 (m, 2 H), 7.99 (d, J = 8.0 Hz, 2 H), 7.63-7.55 (m, 2 H), 7.36-7.27 (m, 2 H), 7.23-7.16 (m, 1 H), 7.15-7.08 (m, 1 H), 1.05 (s, 4.5 H), 1.04 (s, 4.5 H); HRMS *m*/*z* Calcd. for C₂₆H₂₄NO₂S (M + H⁺): 414.1528; Found: 414.1529.

General Procedure for Aminative Umpolung Cyclization of 6 to Diamines 10 (Table 2)

A mixture of compound **6** (0.20 mmol), 2,2-diphenylglycine **2** (0.045 g, 0.20 mmol) and K₂CO₃ (0.0055 g, 0.040 mmol) in THF-H₂O (7:3) (1.2 mL) was stirred at 40 °C for 48 h. After removal of the solvent via rotary evaporation under reduced pressure, the residue was submitted to flash column chromatography on silica gel (petroleum ether / ethyl acetate = 3:1) to give the product **10**.

Deprotection of 10a to 11a and 7a (Scheme 3)

A mixture of **10a** (0.50 g, 1.046 mmol), HCl aqueous solution (0.05 M) (60 mL), and THF (15 mL) was stirred at room temperature. The reaction was monitored by TLC analysis. Upon completion, the reaction was quenched by addition of saturated aqueous NaHCO₃ until pH 7~8, then extracted with EtOAc (30 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered, concentrated, and purified by column chromatography (ethyl acetate / methanol = 20:1) to give the product (*S*,*R*,*R*)-**11a** (0.165 g, 50% yield) and (*S*,*S*,*S*)-**11a** (0.125g, 38% yield). To a stirred solution of (S,R,R)-**11a** (0.075 g, 0.239 mmol) in THF (0.30 mL) was added HCl aqueous solution (6.0 M, 0.30 mL). The mixture was stirred at room temperature for 30 min. Upon completion, the reaction was quenched by addition of saturated aqueous NaHCO₃ until pH 7~8, then extracted with DCM (10 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered, concentrated, and purified by column chromatography (DCM / 2.9 M ammonia solution in ethanol = 8:1) to give the product (*R*,*R*)-**7a** (0.038 g, 75% yield) as a blue solid.

Compound (S,S)-7a was also obtained in 78% yield as a blue solid from (S,S,S)-11a following a similar procedure.

Characterization Data

Table 2, Compounds (*S*,*S*,*S*)-10a and (*S*,*R*,*R*)-10a

White solid; IR (KBr) 3189, 3059, 1626, 1484, 1446, 1285, 1266, 1054 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.85 (m, 3 H), 7.68 (d, J = 7.6 Hz, 1 H), 7.67-7.25 (m, 13 H), 7.09 (d, J = 7.6 Hz, 1 H), 4.89 (t, J = 8.0 Hz, 0.56 H), 4.82 (d, J = 7.2 Hz, 0.44 H), 4.73-4.77 (m, 1 H), 3.40 (d, J = 8.0 Hz, 0.56 H), 3.13 (d, J = 7.6 Hz, 0.44 H), 1.13 (s, 5.0 H), 1.12 (s, 4.0 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 169.3, 139.7, 139.3, 136.6, 136.44, 136.40, 135.7, 135.6, 135.4, 133.8, 133.7, 133.33, 133.29, 130.34, 130.2, 129.0, 128.9, 128.78, 128.76, 128.6, 128.49, 128.45, 128.3, 128.19, 128.15, 128.1, 128.00, 127.96, 127.9, 127.74, 127.66, 127.4, 124.1, 124.03, 124.01, 123.9, 66.5, 66.2, 61.4, 59.9, 56.3, 56.1, 22.8, 22.4; HRMS m/z Calcd. for C₃₁H₃₁N₂OS (M + H⁺): 479.2157; Found: 479.2154.

Table 2, Compound (*S***,***R***,***R***)-10b**

White solid; IR (KBr) 3440, 3183, 1613, 1579, 1501, 1428, 1287, 1044 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.4, 5.6 Hz, 1 H), 7.58 (d, J = 8.4 Hz, 2 H), 7.53-7.45 (m, 3 H), 7.43-7.34 (m, 3 H), 7.29 (t, J = 7.6 Hz, 2 H), 7.24 (d, J = 7.2 Hz, 2 H), 7.04 (td, J = 8.4, 2.8 Hz, 1 H), 6.96 (d, J = 7.2 Hz, 2 H), 4.76-4.66 (m, 2 H), 3.31-3.24 (m, 1 H), 1.06 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 164.5, 164.3, 162.1, 161.8, 139.1, 136.4, 134.95, 134.93, 134.87, 134.85, 134.61, 134.59, 134.53, 134.51, 132.13, 132.10, 131.38, 131.36, 130.7, 130.6, 130.5, 130.0, 129.9, 128.95, 128.91, 128.1, 127.4, 115.8, 115.5, 115.3, 115.1, 111.4, 111.2, 110.9, 65.6, 60.5, 56.2, 22.7; HRMS *m*/*z* Calcd. for C₃₁H₂₉F₂N₂OS (M + H⁺): 515.1969; Found: 515.1955.

Table 2, Compound (S,S,S)-10b

White solid; IR (KBr) 3446, 1615, 1579, 1501, 1429, 1172, 1073 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.38 (m, 8 H), 7.36-7.30 (m, 1 H), 7.29-7.22 (m, 4 H), 7.06 (td, *J* = 8.4, 2.4 Hz, 1 H), 6.95 (d, *J* = 1.2 Hz, 1 H), 6.93 (d, *J* = 1.2 Hz, 1 H), 4.78 (d, *J* = 5.6 Hz, 1 H), 4.58 (dd, *J* = 7.2, 5.6 Hz, 1 H), 3.05 (d, *J* = 7.2 Hz, 1 H), 1.03 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 164.4, 164.3, 162.0, 161.9, 139.5, 136.51, 134.99, 134.96, 134.90, 134.88, 134.74, 134.72, 134.67, 134.64, 131.32, 131.29, 131.04, 131.01, 130.84, 130.76, 130.68, 130.5, 129.0, 128.9, 128.1, 127.7, 115.5, 115.32, 115.26, 115.1, 111.4, 111.3, 111.13, 111.11, 65.8, 59.1, 56.3, 22.4; HRMS *m/z* Calcd. for C₃₁H₂₉F₂N₂OS (M + H⁺): 515.1969; Found: 515.1964.

White solid; IR (KBr) 3177, 1626, 1597, 1481, 1446, 1431, 1266, 1043 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.56 (m, 5 H), 7.52-7.26 (m, 7 H), 7.25-7.20 (m, 1 H), 7.11-7.02 (m, 2 H), 6.82-6.76 (m, 1 H), 4.83 (t, *J* = 8.6 Hz, 0.60 H), 4.74-4.68 (m, 0.80 H), 4.65 (d, *J* = 8.8 Hz, 0.60 H), 3.33 (d, *J* = 8.0 Hz, 0.60 H), 3.04 (d, *J* = 6.4 Hz, 0.40 H), 1.14 (s, 3.6 H), 1.13 (s, 5.4 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 170.3, 163.9, 163.75, 163.70, 163.6, 161.5, 161.3, 161.2, 161.1, 139.4, 139.0, 138.7, 138.6, 138.0, 137.9, 137.8, 137.7, 137.6, 137.5, 136.3, 136.1, 130.7, 130.6, 129.25, 129.21, 129.17, 129.13, 129.07, 129.02, 128.99, 128.95, 128.94, 128.12, 128.09, 127.5, 127.3, 125.8, 125.72, 125.71, 125.63, 125.61, 125.54, 125.52, 115.62, 115.56, 115.44, 115.40, 115.3, 115.2, 115.1, 115.0, 114.9, 114.8, 114.7, 114.6, 66.13, 66.11, 65.83, 65.82, 61.4, 59.59, 59.58, 56.6, 56.3, 22.7, 22.5; HRMS *m*/*z* Calcd. for C₃₁H₂₉F₂N₂OS (M + H⁺): 515.1969; Found: 515.1959.

Table 2, Compound (S,R,R)-10d

White solid; IR (KBr) 3192, 1631, 1330, 1318, 1265, 1172, 1123, 1086 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.95 (d, J = 8.4 Hz, 1 H), 7.93 (d, J = 8.8 Hz, 1 H), 7.72 (dd, J = 8.0, 1.2 Hz, 1 H), 7.65 (dd, J = 8.0, 1.2 Hz, 1 H), 7.58-7.46 (m, 5 H), 7.41-7.34 (m, 1 H), 7.29 (d, J = 7.6 Hz, 2 H), 7.25 (d, J = 8.4 Hz, 2 H), 7.16 (s, 1 H), 4.88-4.78 (m, 2 H), 3.21 (d, J = 5.6 Hz, 1 H), 1.02 (s, 9 H); ¹³C NMR (100 MHz,

CDCl₃) δ 170.7, 138.9, 137.3, 136.8, 136.3, 136.0, 135.6, 131.39 (q, *J* = 32.6 Hz), 130.86 (q, *J* = 32.4 Hz), 130.8, 129.2, 128.9, 128.2, 127.4, 126.22 (q, *J* = 3.6 Hz), 126.05 (q, *J* = 3.6 Hz), 125.61 (q, *J* = 3.5 Hz), 125.46 (q, *J* = 3.7 Hz), 125.1, 124.9, 124.00 (q, *J* = 270.9 Hz), 123.99 (q, *J* = 270.3 Hz), 65.2, 59.9, 56.3, 22.5; HRMS *m*/*z* Calcd. for C₃₃H₂₉F₆N₂OS (M + H⁺): 615.1905; Found: 615.1907.

Table 2, Compound (S,S,S)-10d

White solid; IR (KBr) 3208, 3061, 1622, 1324, 1264, 1171, 1124, 1082 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1 H), 7.92 (d, *J* = 8.0 Hz, 1 H), 7.83 (s, 1 H), 7.71 (dd, *J* = 8.0, 1.2 Hz, 1 H), 7.65 (dd, *J* = 8.0, 1.2 Hz, 1 H), 7.56-7.46 (m, 5 H), 7.40-7.32 (m, 2 H), 7.31-7.24 (m, 3 H), 7.21 (s, 1 H), 4.87 (d, *J* = 6.4 Hz, 1 H), 4.77 (t, *J* = 6.8 Hz, 1 H), 3.20 (dd, *J* = 6.4, 2.8 Hz, 1 H), 1.07 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 139.2, 137.1, 136.6, 136.3, 135.8, 135.6, 131.01 (q, *J* = 32.2 Hz), 130.88 (q, *J* = 32.5 Hz), 130.8, 129.3, 129.2, 129.1, 128.2, 127.6, 126.9, 125.91 (q, *J* = 3.3 Hz), 125.80 (q, *J* = 3.8 Hz), 125.70 (q, *J* = 3.7 Hz), 125.59 (q, *J* = 3.7 Hz), 125.0, 124.10 (q, *J* = 270.5 Hz), 123.96 (q, *J* = 270.7 Hz), 65.7, 59.2, 56.6, 22.5; HRMS *m*/*z* Calcd. for C₃₃H₂₉F₆N₂OS (M + H⁺): 615.1905; Found: 615.1907.

Table 2, Compound (*S***,***R***,***R***)-10e**

White solid; IR (KBr) 3213, 1625, 1598, 1557, 1446, 1401, 1064 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.65 (m, 3 H), 7.59 (d, *J* = 8.0 Hz, 2 H), 7.54-7.44 (m, 3 H),

7.42-7.35 (m, 1 H), 7.32-7.27 (m, 3 H), 7.24-7.18 (m, 3 H), 6.94 (d, J = 8.4 Hz, 1 H), 4.74 (t, J = 7.4 Hz, 1 H), 4.67 (d, J = 8.0 Hz, 1 H), 3.25-3.28 (m, 1 H), 1.07 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 139.0, 136.3, 134.84, 134.81, 134.4, 134.2, 134.1, 133.9, 130.6, 130.2, 129.6, 129.00, 128.98, 128.93, 128.5, 128.1, 127.4, 124.4, 124.1, 65.5, 60.6, 56.3, 22.7; HRMS *m*/*z* Calcd. for C₃₁H₂₉Cl₂N₂OS (M + H⁺): 547.1378; Found: 547.1381.

Table 2, Compound (S,S,S)-10e

White solid; IR (KBr) 3321, 1622, 1598, 1558, 1485, 1446, 1401, 1074 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 2.4 Hz, 1 H), 7.72 (d, J = 2.0 Hz, 1 H), 7.55-7.45 (m, 5 H), 7.45 (d, J = 8.0 Hz, 1 H), 7.37-7.30 (m, 2 H), 7.28-7.23 (m, 4 H), 7.21 (dd, J = 8.4, 2.0 Hz, 1 H), 6.90 (d, J = 8.0 Hz, 1 H), 4.76 (d, J = 6.0 Hz, 1 H), 4.59 (dd, J = 7.2, 6.0 Hz, 1 H), 3.04 (d, J = 7.2 Hz, 1 H), 1.04 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 139.4, 136.4, 134.7, 134.6, 134.3, 134.09, 134.07, 133.7, 130.5, 130.4, 130.3, 129.1, 129.03, 128.98, 128.6, 128.5, 128.1, 127.7, 124.3, 65.7, 59.1, 56.4, 22.5; HRMS *m*/*z* Calcd. for C₃₁H₂₉Cl₂N₂OS (M + H⁺): 547.1378; Found: 547.1381.

Table 2, Compound (S,R,R)-10f

White solid; IR (KBr) 3162, 2961, 1629, 1468, 1446, 1279, 1042 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 1.6 Hz, 1 H), 7.66 (d, *J* = 8.4 Hz, 2 H), 7.60 (d, *J* = 8.0

Hz, 2 H), 7.53-7.27 (m, 8 H), 7.23 (dd, J = 8.0, 1.6 Hz, 2 H), 6.96 (d, J = 2.0 Hz, 1 H), 4.75 (dd, J = 7.6, 7.2 Hz, 1 H), 4.66 (d, J = 7.6 Hz, 1 H), 3.26 (d, J = 7.2 Hz, 1 H), 1.08 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 138.9, 137.9, 137.2, 136.2, 134.5, 134.0, 132.5, 131.3, 131.1, 130.7, 130.1, 129.01, 128.96, 128.7, 128.5, 128.3, 128.1, 127.3, 125.5, 125.3, 65.5, 60.7, 56.3, 22.7; HRMS *m*/*z* Calcd. for C₃₁H₂₉Cl₂N₂OS (M + H⁺): 547.1378; Found: 547.1384.

Table 2, Compound (*S***,***S***,***S***)-10f**

(S, S, S)-10f

White solid; IR (KBr) 3445, 2958, 1622, 1598, 1470, 1446, 1180, 1095 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (t, J = 8.4 Hz, 2 H), 7.57 (d, J = 8.0 Hz, 2 H), 7.53-7.45 (m, 4 H), 7.40-7.26 (m, 7 H), 6.95 (d, J = 2.4 Hz, 1 H), 4.73 (d, J = 7.2 Hz, 1 H), 4.64 (t, J = 7.2 Hz, 1 H), 3.11 (d, J = 7.2 Hz, 1 H), 1.10 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 139.3, 137.4, 137.0, 136.3, 134.2, 133.9, 131.4, 131.1, 130.6, 130.1, 129.11, 129.08, 129.03, 128.74, 128.65, 128.5, 128.1, 127.6, 125.4, 125.3, 65.9, 59.4, 56.6, 22.5; HRMS *m*/*z* Calcd. for C₃₁H₂₉Cl₂N₂OS (M + H⁺): 547.1378; Found: 547.1383.

Table 2, Compounds (*S*,*S*,*S*)-10g and (*S*,*R*,*R*)-10g

White solid; IR (KBr) 2957, 2922, 1621, 1446, 1266, 1070 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.62 (m, 5 H), 7.52-7.25 (m, 8 H), 7.22-7.14 (m, 1 H), 7.12-7.06 (m, 1

H), 6.98 (d, J = 7.6 Hz, 1 H), 4.83 (t, J = 8.0 Hz, 0.55 H for major isomer), 4.77 (d, J = 7.2 Hz, 0.45 H for minor isomer), 4.71-4.67 (m, 1 H), 3.35 (d, J = 8.0 Hz, 0.55 H for major isomer), 3.09 (d, J = 8.0 Hz, 0.45 H for minor isomer), 2.46 (s, 1.35 H for minor isomer), 2.444 (s, 1.65 H for major isomer), 2.436 (s, 1.65 H for major isomer), 2.431 (s, 1.35 H for minor isomer), 1.13 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 169.0, 139.8, 139.3, 138.1, 137.9, 137.7, 137.6, 136.7, 136.5, 133.7, 133.62, 133.56, 133.12, 133.10, 133.0, 132.8, 132.5, 132.4, 130.2, 130.1, 130.0, 129.03, 128.97, 128.9, 128.71, 128.68, 128.66, 128.6, 128.5, 128.4, 128.3, 128.0, 127.94, 127.89, 127.6, 127.4, 124.7, 124.62, 124.58, 124.5, 66.5, 66.2, 61.4, 59.9, 56.3, 56.1, 22.7, 22.4, 21.5, 21.43, 21.39; HRMS *m*/*z* Calcd. for C₃₃H₃₅N₂OS (M + H⁺): 507.2470; Found: 507.2466.

Table 2, Compounds (*S*,*S*,*S*)-10h and (*S*,*R*,*R*)-10h

White solid; IR (KBr) 3055, 3025, 1625, 1487, 1446, 1284, 1072 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.60 (m, 5 H), 7.52-7.44 (m, 3 H), 7.38-7.27 (m, 5 H), 7.23-7.17 (m, 2 H), 6.84 (s, 1 H), 4.83-4.78 (m, 1 H), 4.73-4.66 (m, 1 H), 3.32 (d, *J* = 7.6 Hz, 0.58 H for major isomer), 3.08 (d, *J* = 8.0 Hz, 0.42 H for minor isomer), 2.42 (s, 1.74 H for major isomer), 2.41 (s, 1.26 H for minor isomer), 2.35 (s, 1.74 H for major isomer), 2.41 (s, 1.26 H for minor isomer), 2.35 (s, 1.74 H for major isomer), 2.33 (s, 1.26 H for minor isomer), 1.14 (s, 3.8 H for minor isomer), 1.12 (s, 5.2 H for major isomr); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 169.1, 139.8, 139.3, 137.9, 137.5, 137.3, 137.2, 136.7, 136.5, 135.9, 135.3, 135.2, 134.9, 131.09, 131.05, 130.64, 130.62, 130.3, 130.2, 130.1, 129.3, 129.1, 129.04, 129.00, 128.95, 128.9, 128.8, 128.7, 128.6, 128.4, 128.0, 127.9, 127.7, 127.5, 123.8, 123.65, 123.62, 123.5, 66.6, 66.3, 61.4, 60.1, 56.4, 56.1, 22.7, 22.5, 21.5, 21.44, 21.39; HRMS *m*/*z* Calcd. for C₃₃H₃₅N₂OS (M + H⁺): 507.2470; Found: 507.2463.

White solid; IR (KBr) 2958, 2835, 1614, 1487, 1464, 1431, 1281, 1248, 1050 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.58 (m, 4 H), 7.50-7.22 (m, 8.43 H), 7.11 (d, *J* = 2.4 Hz, 0.57 H for major isomer), 6.94-6.85 (m, 2 H), 6.65-6.60 (m, 1 H), 4.84 (dd, *J* = 8.8, 8.4 Hz, 0.57 H for major isomer), 4.75-4.64 (m, 1.43 H), 3.86 (s, 1.7 H for major isomer), 3.83 (s, 1.3 H for minor isomer), 3.78 (s, 1.7 H for major isomer), 3.77 (s, 1.3 H for minor isomer), 3.34 (d, *J* = 8.4 Hz, 0.57 H for major isomer), 3.09 (d, *J* = 7.2 Hz, 0.43 H for minor isomer), 1.15 (s, 3.9 H for minor isomer), 1.13 (s, 5.1 H for major isomer); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 169.5, 159.4, 159.0, 158.84, 158.81, 139.7, 139.2, 137.3, 136.7, 136.6, 136.43, 136.38, 136.2, 130.4, 130.2, 129.0, 128.9, 128.79, 128.77, 128.02, 127.97, 127.7, 127.4, 126.6, 126.4, 126.3, 126.2, 124.7, 124.6, 115.0, 114.1, 113.9, 113.7, 113.3, 113.1, 112.7, 112.6, 66.7, 66.3, 62.1, 60.3, 56.5, 56.2, 55.5, 55.4, 55.31, 55.30, 22.7, 22.5; HRMS *m*/*z* Calcd. for C₃₃H₃₅N₂O₃S (M + H⁺): 539.2368; Found: 539.2363.

White solid; IR (KBr) 2932, 1607, 1508, 1464, 1447, 1263, 1134, 1116, 1044 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.59 (m, 1 H), 7.64-7.15 (m, 11.63 H), 7.00 (s, 0.37 H for minor isomer), 6.48 (s, 0.63 H for major isomer), 6.39 (s, 0.37 H for minor isomer), 4.76 (d, *J* = 5.6 Hz, 0.37 H for minor isomer), 4.71 (dd, *J* = 8.0, 7.6 Hz, 0.63

H for major isomer), 4.62 (d, J = 8.0 Hz, 0.63 H for major isomer), 4.52 (dd, J = 8.4, 5.6 Hz, 0.37 H for minor isomer), 4.00 (s, 1.1 H for minor isomer), 3.97 (s, 1.9 H for major isomer), 3.96 (s, 1.9 H for major isomer), 3.95 (s, 1.1 H for minor isomer), 3.94 (s, 1.9 H for major isomer), 3.91 (s, 1.1 H for minor isomer), 3.78 (s, 1.9 H for major isomer), 3.76 (s, 1.1 H for minor isomer), 3.21 (d, J = 7.6 Hz, 0.63 H for major isomer), 3.16 (d, J = 8.4 Hz, 0.37 H for minor isomer), 1.08 (s, 5.7 H for major isomer), 1.06 (s, 3.3 H for minor isomer); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 169.1, 149.08, 149.05, 149.03, 149.00, 148.9, 148.5, 148.4, 148.3, 139.7, 139.3, 136.8, 136.6, 132.4, 130.3, 130.1, 130.0, 128.81, 128.78, 128.76, 128.3, 128.0, 127.9, 127.8, 127.7, 127.5, 127.2, 126.3, 126.24, 126.18, 112.5, 112.1, 111.6, 107.4, 107.3, 107.04, 107.01, 66.2, 66.0, 61.5, 60.1, 56.33, 56.31, 56.25, 56.2, 56.10, 56.05, 56.0, 55.9, 22.6, 22.5; HRMS m/z Calcd. for C₃₅H₃₉N₂O₅S (M + H⁺): 599.2580; Found: 599.2576.

Table 2, Compound (S,R,R)-10k

White solid; IR (KBr) 3056, 2959, 1625, 1596, 1446, 1079 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.88 (m, 7 H), 7.60-7.52 (m, 3 H), 7.50-7.42 (m, 5 H), 7.38-7.22 (m, 7 H), 5.05 (dd, *J* = 11.2, 7.6 Hz, 1 H), 4.65 (d, *J* = 11.2 Hz, 1 H), 3.10 (d, *J* = 7.6 Hz, 1 H), 1.36 (s, 9 H) ; ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 139.8, 137.0, 136.8, 136.5, 133.7, 133.4, 130.6, 130.4, 130.3, 130.2, 129.4, 129.2, 128.9, 128.8, 128.7, 128.4, 128.39, 128.32, 128.2, 127.8, 127.6, 125.6, 125.5, 125.29, 125.25, 124.0, 122.4, 67.8, 60.8, 57.0, 22.7; HRMS *m*/*z* Calcd. for C₃₉H₃₅N₂OS (M + H⁺): 579.2470; Found: 579.2472.

Table 2, Compound (S,S,S)-10k

White solid; IR (KBr) 3208, 3055, 1627, 1446, 1120, 1047, 1032 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.4 Hz, 1 H), 7.98 (d, *J* = 8.4 Hz, 1 H), 7.95-7.88 (m, 3 H), 7.30 (d, *J* = 7.6 Hz, 2 H), 7.54-7.21 (m, 15 H), 5.14 (t, *J* = 10.8 Hz, 1 H), 4.67 (d, *J* = 11.2 Hz, 1 H), 3.61 (d, *J* = 10.4 Hz, 1 H), 1.27 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 139.3, 137.4, 136.3, 136.2, 133.6, 133.5, 130.6, 130.4, 130.14, 130.09, 129.4, 129.1, 128.91, 128.88, 128.6, 128.22, 128.19, 128.17, 127.7, 127.6, 127.2, 125.6, 125.5, 125.3, 125.2, 123.8, 123.7, 67.4, 64.3, 56.7, 23.1; HRMS *m/z* Calcd. for C₃₉H₃₅N₂OS (M + H⁺): 579.2470; Found: 579.2463.

Scheme 3, Compound (S,R,R)-11a

White solid; IR (KBr) 3365, 3212, 2958, 1484,1451, 1363, 1049 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.53 (m, 2 H), 7.38 (d, *J* = 7.6 Hz, 1 H), 7.25-7.06 (m, 5 H), 4.32-4.22 (m, 1 H), 3.95-3.86 (m, 1 H), 3.62-3.50 (m, 1 H), 1.93 (br, 2 H), 0.90 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 134.0, 132.8, 131.7, 129.5, 128.9, 128.2, 128.1, 128.0, 123.8, 123.7, 60.5, 55.8, 54.7, 22.3; HRMS *m*/*z* Calcd. for C₁₈H₂₃N₂OS (M + H⁺): 315.1531; Found: 315.1523.

Scheme 3, Compound (S,S,S)-11a

White solid; IR (KBr) 3362, 3192, 2979, 2958, 1481, 1452, 1363, 1047 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (t, J = 7.2 Hz, 2 H), 7.36 (t, J = 6.8 Hz, 2 H), 7.28-7.14 (m, 4 H), 4.26 (dd, J = 6.8, 6.4 Hz, 1 H), 4.02-3.92 (m, 2 H), 2.56 (br, 2 H), 0.96 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 134.1, 132.9, 132.1, 129.2, 128.7, 128.4, 128.2, 128.1, 128.0, 124.0, 123.7, 61.2, 56.0, 55.3, 22.5; HRMS m/z Calcd. for $C_{18}H_{23}N_2OS (M + H^+)$: 315.1531; Found: 315.1524.

Scheme 3, Compound (R,R)-7a

Blue solid; m.p. 100-103 °C; $[\alpha]_D^{25} = -180.1$ (*c* = 0.5, CHCl₃); IR (KBr) 3349, 2924, 1577, 1482, 1450 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 2 H), 7.48 (d, J = 7.2 Hz, 2 H), 7.42-7.30 (m, 4 H), 3.85 (s, 2 H), 1.61 (s, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 132.4, 128.4, 128.2, 127.9, 124.1, 57.2; HRMS *m/z* Calcd. for C₁₄H₁₅N₂ (M + H⁺): 211.1230; Found: 211.1230.

Scheme 3, Compound (S,S)-7a

Blue solid; m.p. 100-103 °C; $[\alpha]_D^{25} = 190.8$ (c = 0.5, CHCl₃); IR (KBr) 3356, 2924, 1560, 1512, 1450 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 2 H), 7.48 (d, J = 7.6 Hz, 2 H), 7.42-7.30 (m, 4 H), 3.85 (s, 2 H), 1.61 (s, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 132.4, 128.4, 128.2, 127.9, 124.1, 57.2; HRMS *m/z* Calcd. for C₁₄H₁₅N₂ (M + H⁺): 211.1230; Found: 211.1230.

X-ray structure of compound (*S*,*R*,*R*)-10b (CCDC 1862252)

Identification code	mo_dm17172_0m	mo_dm17172_0m		
Empirical formula	C31 H28 F2 N2 O S			
Formula weight	514.61			
Temperature	296 K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	P 21 21 21			
Unit cell dimensions	a = 9.0912(17) Å	<i>α</i> = 90°.		
	b = 17.553(3) Å	$\beta = 90^{\circ}$.		
	c = 20.148(4) Å	$\gamma = 90^{\circ}.$		
Volume	3215.1(10) Å ³			
Z	4			
Density (calculated)	1.063 Mg/m ³			
Absorption coefficient	0.134 mm ⁻¹			
F(000)	1080			
Crystal size	0.2 x 0.18 x 0.15 mm ³	0.2 x 0.18 x 0.15 mm ³		
Theta range for data collection	2.022 to 27.518°.			
Index ranges	-11<=h<=11, -22<=k<=	-11<=h<=11, -22<=k<=20, -26<=l<=26		
Reflections collected	25952			
Independent reflections	7376 [R(int) = 0.0773]	7376 [R(int) = 0.0773]		
Completeness to theta = 25.242°	100.0 %	100.0 %		
Absorption correction	Semi-empirical from eq	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.6151	0.7456 and 0.6151		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²		
Data / restraints / parameters	7376 / 36 / 337	7376 / 36 / 337		
Goodness-of-fit on F ²	0.998			
Final R indices [I>2sigma(I)]	R1 = 0.0670, wR2 = 0.1	R1 = 0.0670, wR2 = 0.1780		
R indices (all data)	R1 = 0.1577, wR2 = 0.2	R1 = 0.1577, $wR2 = 0.2264$		
Absolute structure parameter	0.09(4)			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.437 and -0.274 e.Å ⁻³	0.437 and -0.274 e.Å ⁻³		

Table 1. Crystal data and structure refinement for (S,R,R)-10b(mo_dm17172_0m) (CCDC 1862252)

X-ray structure of compound (*S*,*S*,*S*)-10b (CCDC 1862253)

Identification code	cd17233		
Empirical formula	C31 H28 F2 N2 O S		
Formula weight	514.61		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 11.2418(17) Å	α=98.339(3)°.	
	b = 11.3491(16) Å	β=114.149(3)°.	
	c = 11.7184(18) Å	$\gamma = 93.521(3)^{\circ}.$	
Volume	1337.7(3) Å ³		
Z	2		
Density (calculated)	1.278 Mg/m ³		
Absorption coefficient	0.162 mm ⁻¹		
F(000)	540		
Crystal size	0.200 x 0.140 x 0.100 mm ³		
Theta range for data collection	1.830 to 24.997°.		
Index ranges	-13<=h<=13, -13<=k<=11, -13<=l<=13		
Reflections collected	7414		
Independent reflections	4701 [R(int) = 0.0232]		
Completeness to theta = 25.242°	97.2 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.6315		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4701 / 0 / 350		
Goodness-of-fit on F ²	1.049		
Final R indices [I>2sigma(I)]	R1 = 0.0588, $wR2 = 0.1384$		
R indices (all data)	R1 = 0.0755, wR2 = 0.1492		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.499 and -0.331 e.Å ⁻³		

Table 1. Crystal data and structure refinement for (S,S,S)-10b (cd17233) (CCDC1862253)

