Supporting Information

Umpolung Cyclization Reaction of N-Cinnamoylthioureas
in the Presence of DBU

Rei Saito, a Naohiro Uemura, a Hiroki Ishikawa, a Akina Magara, a Yasushi Yoshida, a,b Takashi Mino, a,b Yoshio Kasashima, c and Masami Sakamoto a,b

a Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Yayoi-cho, Inage-ku, Chiba 265-8522, Japan
b Molecular Chirality Research Center, Yayoi-cho, Inage-ku, Chiba 265-8522, Japan
c Education Center, Faculty of Creative Engineering, Chiba Institute of Technology, Shibazono, Narashino, Chiba 275-0023, Japan.
Contents

General -- S3
Single crystal X-Ray single crystallographic analysis of 2h ------------------ S4
Single crystal X-Ray single crystallographic analysis of 2i ------------------ S5
Single crystal X-Ray single crystallographic analysis of 2j ------------------ S6
Single crystal X-Ray single crystallographic analysis of 3i ------------------ S7
Single crystal X-Ray single crystallographic analysis of 3j ------------------ S8
Single crystal X-Ray single crystallographic analysis of 4j ------------------ S9
Single crystal X-Ray single crystallographic analysis of 5c ------------------ S10
1H and 13C NMR spectral chart of 1a-1j ----------------------------------- S11
1H and 13C NMR spectral chart of 2a-2j ----------------------------------- S21
1H and 13C NMR spectral chart of 3-5 ----------------------------------- S31
General.

NMR spectra were recorded in CDCl$_3$ solutions on Bruker 300 and 400 spectrometers for 1H- and 13C-NMR. Chemical shifts are reported in parts per million (ppm) relative to TMS as an internal standard. IR spectra were recorded on a JASCO FT/IR-230 spectrometer. High-resolution mass spectra (HRMS) were performed on an Orbitrap ThermoFisher Exactive ion trap mass spectrometer. X-ray single crystallographic analysis was conducted using a SMART APEX II (Bruker AXS) and APEX II ULTRA (Bruker AXS). Commercially available reagents and solvents were used without further purification.
Single crystal X-Ray crystallographic analysis of 2h (CCDC 1859352)

Colorless prism (0.20 x 0.10 x 0.05 mm3), monoclinic space group $P2_1/c$, $a = 12.8458(5)$ Å, $b = 5.3427(2)$ Å, $c = 24.6144(10)$ Å, $\beta = 101.767(3)$ °, $V = 1653.82(11)$ Å3, $Z = 4$, λ (CuKα) = 1.54178 Å, $\rho = 1.303$ g/cm3, μ (CuKα) = 1.776 mm$^{-1}$, 10898 reflections measured ($T = 173$ K, $3.514^{\circ} < \theta < 68.341^{\circ}$), nb of independent data collected: 3012, nb of independent data used for refinement: 2264 in the final least-squares refinement cycles on F^2, the model converged at $R_1 = 0.0495$, $wR_2 = 0.1324$ [$I > 2s(I)$], $R_1 = 0.0696$, $wR_2 = 0.1416$ (all data), and GOF = 1.007, H-atom parameters constrained.

Figure S1. Perspective view of 2h. Ellipsoids were drawn in 50% probability. Tortional angles: S-C1-N1-C2: 4.09 °, S-C1-N2-C2: 11.13 °, C1-N2-C1-O1: 5.29 °, C2-N1-C1-N1: 11.5 °.
Single crystal X-Ray structure analysis of 2i (CCDC 1859353)

Colorless prism (0.20 x 0.05 x 0.05 mm³), monoclinic space group P2₁/c, a = 13.0104(7) Å, b = 5.4301(3) Å, c = 24.2997(15) Å, β = 101.772(4) °, V = 1680.61(17) Å³, Z = 4, λ (CuKα) = 1.54178 Å, ρ = 1.282 g/cm³, μ (CuKα) = 1.747 mm⁻¹, 11611 reflections measured (T = 173 K, 3.470 ° < θ < 68.239 °), nb of independent data collected: 3051, nb of independent data used for refinement: 2600 in the final least-squares refinement cycles on F², the model converged at R₁ = 0.0468, wR₂ = 0.1307 [I > 2s(I)], R₁ = 0.0545, wR₂ = 0.1367 (all data), and GOF = 1.029, H-atom parameters constrained.

Figure S2. Perspective view of 2i. Ellipsoids were drawn in 50% probability.
Single crystal X-Ray structure analysis of 2j (CCDC 1859354)
Colorless prism (0.50 x 0.20 x 0.10 mm³), monoclinic space group P2₁/c, \(a = 13.613(2) \) Å, \(b = 5.3251(9) \) Å, \(c = 26.026(4) \) Å, \(\beta = 95.958(3) \) °, \(V = 1876.4(6) \) Å³, \(Z = 4 \), \(\lambda (\text{MoK} \alpha) = 0.71073 \) Å, \(\rho = 1.318 \) g/cm³, \(\mu (\text{MoK} \alpha) = 0.188 \) mm⁻¹, 10165 reflections measured (\(T = 173 \) K, \(1.504 \) ° < \(\theta < 27.502 \) °), nb of independent data collected: 4244, nb of independent data used for refinement: 2649 in the final least-squares refinement cycles on \(F^2 \), the model converged at \(R_1 = 0.0521 \), \(wR_2 = 0.1235 \) [\(I > 2s(I) \)], \(R_1 = 0.0974 \), \(wR_2 = 0.1579 \) (all data), and GOF = 0.966, H-atom parameters constrained.

Figure S3. Perspective view of 2j. Ellipsoids were drawn in 50% probability.
Single crystal X-Ray structure analysis of 3i (CCDC 1859407)

Colorless prism (0.30 x 0.20 x 0.10 mm³), monoclinic space group P2₁/c, \(a = 12.4130(15)\) Å, \(b = 17.816(2)\) Å, \(c = 7.9085(10)\) Å, \(\beta = 106.841(2)\) °, \(V = 1674.0(4)\) Å³, \(Z = 4\), \(\lambda (\text{MoK} \alpha) = 0.71073\) Å, \(\rho = 1.287\) g/cm³, \(\mu (\text{MoK} \alpha) = 0.199\) mm⁻¹, 9554 reflections measured (T = 173 K, 2.5558 ° < \(\theta\) < 27.5219 °), nb of independent data collected: 3838, nb of independent data used for refinement: 2379 in the final least-squares refinement cycles on \(F^2\), the model converged at \(R_1 = 0.0512, \ wR_2 = 0.1170\ [l > 2s(l)], \ R_1 = 0.0924, \ wR_2 = 0.1447\) (all data), and GOF = 0.929, H-atom parameters constrained.

Figure S4. Perspective view of 3i. Ellipsoids were drawn in 50% probability.
Single crystal X-Ray structure analysis of 3j (CCDC 1859355)

Colorless prism (0.50 x 0.50 x 0.10 mm³), triclinic space group $P-1$, $a = 8.887(2)$ Å, $b = 9.348(2)$ Å, $c = 12.182(3)$ Å, $\alpha = 80.025(3)\, ^\circ$, $\beta = 72.125(3)\, ^\circ$, $\gamma = 88.273(3)\, ^\circ$, $V = 948.3(4)$ Å³, $Z = 2$, λ(MoKα) = 0.71073 Å, $\rho = 1.304$ g/cm³, μ(MoKα) = 0.186 mm⁻¹, 5472 reflections measured ($T = 173$ K, $2.2128\, ^\circ < \theta < 27.5491\, ^\circ$), nb of independent data collected: 4141, nb of independent data used for refinement: 3585 in the final least-squares refinement cycles on F^2, the model converged at $R_1 = 0.0365$ $wR_2 = 0.0914$ [$I > 2s(I)$], $R_1 = 0.0429$, $wR_2 = 0.0954$ (all data), and GOF = 1.065, H-atom parameters constrained.

Figure S5. Perspective view of 3j. Ellipsoids were drawn in 50% probability.
Single crystal X-Ray structure analysis of 4g (CCDC 1859357)

Colorless prism (0.50 x 0.50 x 0.10 mm³), monoclinic space group C2/c, \(a = 34.665(4)\) Å, \(b = 6.9265(9)\) Å, \(c = 14.4146(18)\) Å, \(\beta = 113.1370(10)\) °, \(V = 3182.7(7)\) Å³, \(Z = 8\), \(\lambda (\text{MoK}) = 0.71073\) Å, \(\rho = 1.296\) g/cm³, \(\mu (\text{MoK}) = 0.207\) mm⁻¹, 17622 reflections measured (\(T = 173\) K, \(2.5558° < \theta < 27.5219°\)), nb of independent data collected: 3651, nb of independent data used for refinement: 3146 in the final least-squares refinement cycles on \(F^2\), the model converged at \(R_1 = 0.0310, wR_2 = 0.0789 [I > 2s(I)]\), \(R_1 = 0.0380, wR_2 = 0.0871\) (all data), and \(\text{GOF} = 1.042\), H-atom parameters constrained.

![Figure S6. Perspective view of 4g. Ellipsoids were drawn in 50% probability.](image)
Single crystal X-Ray structure analysis of 5c (CCDC 1859359)
Colorless prism (0.40 x 0.30 x 0.10 mm³), triclinic space group P-1, a = 8.7745(14) Å, b = 9.4352(16) Å, c = 20.409(3) Å, α = 93.504(2) °, β = 97.479(2) °, γ = 90.918(2) °, V = 1671.6(5) Å³, Z = 4, λ (MoKα) = 0.71073 Å, ρ = 1.218 g/cm³, μ (MoKα) = 0.200 mm⁻¹, 9602 reflections measured (T = 173 K, 2.1632 ° < θ < 23.5028 °), nb of independent data collected: 7319, nb of independent data used for refinement: 4764 in the final least-squares refinement cycles on F², the model converged at R₁ = 0.0538, wR₂ = 0.1302 [I > 2s(I)], R₁ = 0.0851, wR₂ = 0.1602 (all data), and GOF = 0.999, H-atom parameters constrained.

Figure S7. Perspective view of 5c. Ellipsoids were drawn in 50% probability.
Table

<table>
<thead>
<tr>
<th>Parts per Million</th>
<th>1H NMR</th>
<th>13C NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7806</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.6080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5826</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3957</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S8

1H and 13C NMR spectra of 1a
Figure S9. 1H and 13C NMR spectra of 1b
Figure S10. 1H and 13C NMR spectra of 1c

--- PROCESSING PARAMETERS ---

dc_balance(0, FALSE)
sexp(2.0[Hz], 0.0[s])
trapezoid(0%, 0%, 80%, 100%)
zerofill(1)

Filename = 24118rei-H_1-6.jdf
Author = root
Experiment = zg30
Sample_Id = Parameter file, TOPSPINVer
Solvent = CHLOROFORM-D
Creation_Time = 27-MAR-2017 14:25:24
Current_Time = 27-MAR-2017 14:29:08
Comment = Parameter file, TOPSPINVer
Data_Format = 1D COMPLEX
Dim_Size = 16384
Dim_Title = 1H
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR
Field_Strength = 7.05156322[T] (300[MHz])
X_Domain = 1H
X_Freq = 300.23150115[MHz]
X_Freq_Flip = TRUE
X_Offset = 1.50115[kHz]
X_Points = 16384
Scans = 8
Temp_Get = 300[K]
Filter_Factor = 32

--- PROCESSING PARAMETERS ---

dc_balance(0, FALSE)
sexp(2.0[Hz], 0.0[s])
trapezoid(0%, 0%, 80%, 100%)
zerofill(1)

Filename = 24119rei-C_1-5.jdf
Author = root
Experiment = zgpg30
Sample_Id = Parameter file, TOPSPINVer
Solvent = CHLOROFORM-D
Creation_Time = 27-MAR-2017 14:39:06
Revision_Time = 27-MAR-2017 14:40:43
Current_Time = 27-MAR-2017 14:40:47
Comment = Parameter file, TOPSPINVer
Data_Format = 1D COMPLEX
Dim_Size = 32768
Dim_Title = 13C
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR
Field_Strength = 7.05156322[T] (300[MHz])
X_Domain = 13C
X_Freq = 75.50116822[MHz]
X_Freq_Flip = TRUE
X_Offset = 8.30421504[kHz]
X_Points = 32768
X_Sweep = 18.11594203[kHz]
Scans = 128
Temp_Get = 300[K]
Filter_Factor = 32
Figure S11. 1H and 13C NMR spectra of 1d
Figure S12. 1H and 13C NMR spectra of 1e
Figure S13. 1H and 13C NMR spectra of 1f
Figure S14. 1H and 13C NMR spectra of 1g

--- PROCESSING PARAMETERS ---

do_balance(0, fake)
samp(0.0(48), 0.0(48))
trapezoid(40(48), 40(48), 20(48), 100(1))
zerofill(1)
fft(1, TRUE, TRUE)
machinephase

--- PROCESSING PARAMETERS ---

do_balance(0, fake)
samp(0.0(48), 0.0(48))
trapezoid(40(48), 40(48), 20(48), 100(1))
zerofill(1)
fft(1, TRUE, TRUE)
machinephase

--- PROCESSING PARAMETERS ---

do_balance(0, fake)
samp(0.0(48), 0.0(48))
trapezoid(40(48), 40(48), 20(48), 100(1))
zerofill(1)
fft(1, TRUE, TRUE)
machinephase
Figure S15. 1H and 13C NMR spectra of 1h
Figure S16. 1H and 13C NMR spectra of 1i.
Figure S17. 1H and 13C NMR spectra of 1j
Figure S18. 1H and 13C NMR spectra of 2a
Figure S19. 1H and 13C NMR spectra of 2b
Figure S20. 1H and 13C NMR spectra of 2c.
Figure S21. 1H and 13C NMR spectra of 2d.
Figure S22. 1H and 13C NMR spectra of 2e.
Figure S23. \(^1\)H and \(^{13}\)C NMR spectra of 2f.
Figure S24. 1H and 13C NMR spectra of 2g

--- PROCESSING PARAMETERS ---
dc_balance(0, FALSE)
sexp(2.0[Hz], 0.0[s])
trapezoid(0%, 0%, 80%, 100%)
zerofill(1)
fft(1, TRUE, TRUE)
ppm

--- PROCESSING PARAMETERS ---
dc_balance(0, FALSE)
sexp(0.2[Hz], 0.0[s])
trapezoid(0%, 0%, 80%, 100%)
zerofill(1)
fft(1, TRUE, TRUE)
ppm
Figure S25. 1H and 13C NMR spectra of $2h$
Figure S26. 1H and 13C NMR spectra of 2i
Figure S27. 1H and 13C NMR spectra of 2j.

--- PROCESSING PARAMETERS ---
do_balance: 0, 'FLASH'
sexp: 0.2[H], 0.5[s]
trapezoid: [0.0, 0.5, 0.0, 1.0]
zerofill: 1

X: parts per Million: 1H

--- PROCESSING PARAMETERS ---
do_balance: 0, 'FLASH'
sexp: 2.0[H], 0.0[s]
trapezoid: [0.0, 0.0, 80.0, 100.0]
zerofill: 1

X: parts per Million: 13C
Figure S28. 1H and 13C NMR spectra of 3a
Figure S29. 1H and 13C NMR spectra of 3b
Figure S30. \(^1\)H and \(^{13}\)C NMR spectra of 3c.
Figure S31. 1H and 13C NMR spectra of 3d.

--- PROCESSING PARAMETERS ---

filename = 23373rei-H_1-5.jdf
Author = root
Experiment = zg30
Sample_Id = Parameter file, TOPSPINVer
Solvent = CHLOROFORM-D
Creation_Time = 31-MAR-2017 14:20:38
Revision_Time = 31-MAR-2017 14:23:52
Current_Time = 31-MAR-2017 14:24:08
Comment = Parameter file, TOPSPINVer
Data_Format = 1D COMPLEX
Dim_Size = 16384
Dim_Title = 1H
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR
Field_Strength = 7.05156322[T] (300[MHz])
X_Domain = 1H
X_Freq = 300.23150115[MHz]
X_Freq_Flip = TRUE
X_Offset = 1.50115[kHz]
X_Points = 16384
X_Prescans = 1
X_Sweep = 3.61271676[kHz]
Scans = 8
Temp_Get = 300[K]
Filter_Factor = 32

--- PROCESSING PARAMETERS ---

filename = 23686rei-C_1-5.jdf
Author = root
Experiment = zgpg30
Sample_Id = Parameter file, TOPSPINVer
Solvent = CHLOROFORM-D
Creation_Time = 31-MAR-2017 14:29:51
Revision_Time = 31-MAR-2017 14:31:03
Current_Time = 31-MAR-2017 14:31:07
Comment = Parameter file, TOPSPINVer
Data_Format = 1D COMPLEX
Dim_Size = 32768
Dim_Title = 13C
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR
Field_Strength = 7.05156322[T] (300[MHz])
X_Domain = 13C
X_Freq = 75.50116822[MHz]
X_Freq_Flip = TRUE
X_Offset = 8.30421504[kHz]
X_Points = 16384
X_Prescans = 1
X_Sweep = 18.11594203[kHz]
Scans = 256
Temp_Get = 300[K]
Filter_Factor = 8
Figure S32. ¹H and ¹³C NMR spectra of 3e

--- PROCESSING PARAMETERS ---
dc_balance(0, FALSE)
sexp(0.2[Hz], 0.0[s])
trapezoid(0%, 0%, 80%, 100%)
zerofill(1)
fft(1, TRUE, TRUE)
machinephase
ppm

Filename = Z:\ liaison\S-1-4.jdf
Author = root
Experiment = zg30
Sample_Id = Parameter file, TOPSPINVer
Solvent = CHLOROFORM-D
Creation_Time = 29-JAN-2018 18:35:05
Revision_Time = 29-JAN-2018 18:38:19
Current_Time = 29-JAN-2018 18:38:24

Comment = Parameter file, TOPSPINVer
Data_Format = 1D COMPLEX
Dim_Size = 16384
Dim_Title = ¹H
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR

Field_Strength = 7.05156322[T] (300[MHz])
X_Domain = ¹H
X_Freq = 300.23150115[MHz]
X_Freq_Flip = TRUE
X_Offset = 1.50115[kHz]
X_Points = 16384
X_Sweep = 3.61271676[kHz]
Scans = 8
Temp_Get = 300[K]
Filter_Factor = 32

--- PROCESSING PARAMETERS ---
dc_balance(0, FALSE)
sexp(0.2[Hz], 0.0[s])
trapezoid(0%, 0%, 80%, 100%)
zerofill(1)
fft(1, TRUE, TRUE)
machinephase
ppm

Filename = Z:\ liaison\C-1-5.jdf
Author = root
Experiment = zgpg30
Sample_Id = Parameter file, TOPSPINVer
Solvent = CHLOROFORM-D
Creation_Time = 31-MAR-2017 14:36:58
Revision_Time = 31-MAR-2017 14:39:02
Current_Time = 31-MAR-2017 14:39:07

Comment = Parameter file, TOPSPINVer
Data_Format = 1D COMPLEX
Dim_Size = 32768
Dim_Title = ¹³C
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR

Field_Strength = 7.05156322[T] (300[MHz])
X_Domain = ¹³C
X_Freq = 75.50116822[MHz]
X_Freq_Flip = TRUE
X_Offset = 8.30421504[kHz]
X_Points = 32768
X_Sweep = 18.11594203[kHz]
Scans = 128
Temp_Get = 300[K]
Filter_Factor = 8
Figure S33. 1H and 13C NMR spectra of 3f
Figure S34. 1H and 13C NMR spectra of 3g

---- PROCESSING PARAMETERS ----

Filename: 4-0585rei-H_1-3.jdf
Author: nmr
Experiment = zg30
Sample_Id = green
Solvent = DMSO-d6
Creation_Time = 14-SEP-2018 10:19:29
Revision_Time = 14-SEP-2018 10:28:41

Comment = green
Data_Format = 1D COMPLEX
Dim_Title = 1H
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR
Field_Strength = 9.39910925 [T] (400 [MHz])
X_Domain = 1H
X_Freq = 400.1820009 [MHz]
X_Offset = 2.0009 [kHz]
X_Points = 32768

Scans = 8
Temp_Get = 296.46 [K]
Filter_Factor = 4144

---- PROCESSING PARAMETERS ----

Filename: 4-0238rei-C_1-5.jdf
Author: nmr
Experiment = zgpg30
Sample_Id = Parameter file, TopSpin 3.5
Solvent = DMSO-d6
Creation_Time = 5-FEB-2018 11:38:46
Revision_Time = 5-FEB-2018 11:40:38

Comment = Parameter file, TopSpin 3.5
Data_Format = 1D COMPLEX
Dim_Title = 13C
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR
Field_Strength = 9.39910925 [T] (400 [MHz])
X_Domain = 13C
X_Freq = 100.63640982 [MHz]
X_Offset = 11.068788 [kHz]
X_Points = 32768

Scans = 256
Temp_Get = 294.66 [K]
Filter_Factor = 4144
Figure S35. 1H and 13C NMR spectra of 3h
Figure S36. 1H and 13C NMR spectra of 3i.
Figure S37. 1H and 13C NMR spectra of 3j
Figure S38. 1H and 13C NMR spectra of 4d
Figure S39. 1H and 13C NMR spectra of 4f
Figure S40. 1H and 13C NMR spectra of 4g
Figure S4. 1H and 13C NMR spectra of 4h
Figure S42. 1H and 13C NMR spectra of 4i

1H NMR Spectra:
- **ppm**
- **Dim_Title:** 1H
- **Dim_Units:** [ppm]
- **X_Freq:** 300.23150115 MHz
- **X_Freq_Flip:** TRUE
- **X_Offset:** 1.50115 kHz
- **X_Points:** 16384
- **X_Sweep:** 3.61271676 kHz
- **Scans:** 8
- **Temp_Get:** 300 K
- **Filter_Factor:** 32
- **---- PROCESSING PARAMETERS ----**
 - dc_balance(0, FALSE)
 - sexp(0.2 Hz, 0.0 s)
 - trapezoid(0%, 0%, 80%, 100%)
 - zerofill(1)
 - fft(1, TRUE, TRUE)
 - machinephase

13C NMR Spectra:
- **ppm**
- **Dim_Title:** 13C
- **Dim_Units:** [ppm]
- **X_Freq:** 75.50116822 MHz
- **X_Freq_Flip:** TRUE
- **X_Offset:** 8.30421504 kHz
- **X_Points:** 32768
- **X_Sweep:** 18.11594203 kHz
- **Scans:** 128
- **Temp_Get:** 300 K
- **Filter_Factor:** 8
- **---- PROCESSING PARAMETERS ----**
 - dc_balance(0, FALSE)
 - sexp(2 Hz, 0 s)
 - trapezoid(0%, 0%, 80%, 100%)
 - zerofill(1)
 - fft(1, TRUE, TRUE)
 - machinephase

Filename = 23743rei-H_1-9.jdf
Author = root
Experiment = zg30
Sample_Id = Parameter file, TOPSPINVer
Solvent = CHLOROFORM-D
Creation_Time = 30-MAR-2017 16:00:49
Revision_Time = 30-MAR-2017 16:03:22
Current_Time = 30-MAR-2017 16:03:43
Comment = Parameter file, TOPSPINVer
Data_Format = 1D COMPLEX
Dim_Size = 16384
Dim_Title = 1H
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR
Field_Strength = 7.05156322 T (300 MHz)
X_Domain = 1H
X_Freq = 300.23150115 MHz
X_Freq_Flip = TRUE
X_Offset = 1.50115 kHz
X_Points = 16384
X_Sweep = 3.61271676 kHz
Scans = 8
Temp_Get = 300 K
Filter_Factor = 32

Filename = 23744rei-C_1-7.jdf
Author = root
Experiment = zgpg30
Sample_Id = Parameter file, TOPSPINVer
Solvent = CHLOROFORM-D
Creation_Time = 30-MAR-2017 16:08:33
Revision_Time = 30-MAR-2017 16:09:27
Current_Time = 30-MAR-2017 16:09:32
Comment = Parameter file, TOPSPINVer
Data_Format = 1D COMPLEX
Dim_Size = 32768
Dim_Title = 13C
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR
Field_Strength = 7.05156322 T (300 MHz)
X_Domain = 13C
X_Freq = 75.50116822 MHz
X_Freq_Flip = TRUE
X_Offset = 8.30421504 kHz
X_Points = 32768
X_Sweep = 18.11594203 kHz
Scans = 128
Temp_Get = 300 K
Filter_Factor = 8
Figure S43. 1H and 13C NMR spectra of 4j.

--- PROCESSING PARAMETERS ---

1H NMR:
- dc_balance(0, FALSE)
- sexp(2.0 Hz, 0.0 s)
- trapezoid(0%, 0%, 80%, 100%)
- zerofill(1)
- fft(1, TRUE, TRUE)

13C NMR:
- dc_balance(0, FALSE)
- sexp(0.2 Hz, 0.0 s)
- trapezoid(0%, 0%, 80%, 100%)
- zerofill(1)
- fft(1, TRUE, TRUE)

Filename = 4-0589rei-H_1-3.jdf
Author = nmr
Experiment = zg30
Sample_Id = green
Solvent = CHLOROFORM-D
Creation_Time = 14-SEP-2018 20:37:18
Revision_Time = 14-SEP-2018 20:42:07
Comment = green
Data_Format = 1D COMPLEX
Dim_Size = 32768
Dim_Title = 1H
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR
Field_Strength = 9.39910925 [T] (400 [MHz])
X_Domain = 1H
X_Freq = 400.1820009 [MHz]
X_Freq_Flip = TRUE
X_Offset = 2.0009 [kHz]
X_Points = 32768
X_Prescans = 1
X_Sweep = 4.82625483 [kHz]
Scans = 8
Temp_Get = 296.76 [K]
Filter_Factor = 4144

Filename = 24203rei-C_1-5.jdf
Author = root
Experiment = zgpg30
Sample_Id = Parameter file, TOPSPINVer
Solvent = CHLOROFORM-D
Creation_Time = 30-MAR-2017 16:52:27
Revision_Time = 30-MAR-2017 16:54:49
Current_Time = 30-MAR-2017 16:54:53
Comment = Parameter file, TOPSPINVer
Data_Format = 1D COMPLEX
Dim_Size = 32768
Dim_Title = 13C
Dim_Units = [ppm]
Dimensions = X
Spectrometer = BRUKER_DMX_NMR
Field_Strength = 7.05156322 [T] (300 [MHz])
X_Domain = 13C
X_Freq = 75.50116822 [MHz]
X_Freq_Flip = TRUE
X_Offset = 8.30421504 [kHz]
X_Points = 32768
X_Prescans = 1
X_Sweep = 18.11594203 [kHz]
Scans = 128
Temp_Get = 300 [K]
Filter_Factor = 8
Figure S44. 1H and 13C NMR spectra of 5b

--- PROCESSING PARAMETERS ---
- dc_balance[0, FALSE]
- expm[2.0[Hz], 0.0[s]]
- trapezoid[0.15, 0.15, 80%, 100%]
- zerofill[1]
- ppm

--- PROCESSING PARAMETERS ---
- dc_balance[0, FALSE]
- expm[2.0[Hz], 0.0[s]]
- trapezoid[0.15, 0.15, 80%, 100%]
- zerofill[1]
- ppm
Figure S45. 1H and 13C NMR spectra of 5c