New Friedel-Crafts strategy of preparing 3-acylindoles

Lian-Hua Li, Zhi-Jie Niu, Yong-Min Liang*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University,
Lanzhou, 730000, People’s Republic of China
Fax: +86-931-8912582; e-mail: liangym@lzu.edu.cn

Table of Contents

1 General information S2
2 Optimization of the reaction conditions S3
3 General procedure for the synthesis of desired 3-acylindoles S4
4 Further application S5-6
5 Mechanistic studies S7-16
6 X-ray structures of 3-acylindoles: 3aa, 3al, 3ga, 3ua S17-20
7 Characterization of compounds S21-38
8 Copies of NMR Spectra S39-88
9 References S89
General information

Column chromatography was carried out on silica gel. 1H NMR spectra were recorded on 400 MHz in CDCl$_3$ and DMSO-d_6. 13C NMR spectra were recorded on 100 MHz in CDCl$_3$ and DMSO-d_6. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) and DMSO-d_6 as the internal reference standard. Multiplicities are given as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), q (quartet), or m (multiplet). Their 1H NMR and 13C NMR spectra are provided in the Supporting Information. The HRMS was obtained using a Q-TOF instrument equipped with ESI source. Data collections for crystal structure were performed at room temperature (293 K) using Mo Kα radiation on a Bruker APEXII diffractometer. Melting points were measured with micro melting point apparatus.

The substituted amides were prepared according to the literature. 1 Trifluoromethanesulfonic anhydride (Tf$_2$O) was commercially available. Solvents were dried using standard methods. All commercially available reagents were used with further purification. The toluene was distilled over CaH$_2$.
Optimization of the reaction conditions

Table S1 Additional optimization of the reaction a,b

<table>
<thead>
<tr>
<th>Entry</th>
<th>1a (X equiv.)</th>
<th>2a (Y equiv.)</th>
<th>Base (Z equiv.)</th>
<th>Additive (equiv.)</th>
<th>Temp (°C)</th>
<th>Time (h)</th>
<th>Solvent</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2,6-lutidine (2.2)</td>
<td>-</td>
<td>-78-40</td>
<td>12</td>
<td>DCM</td>
<td>N.D</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2,6-dichloropyridine (2.2)</td>
<td>-</td>
<td>-78-40</td>
<td>12</td>
<td>DCM</td>
<td>N.D</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2-methyppyridine (2.2)</td>
<td>-</td>
<td>-78-40</td>
<td>12</td>
<td>DCM</td>
<td>N.D</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2-iodopyridine (2.2)</td>
<td>-</td>
<td>-78-40</td>
<td>12</td>
<td>DCM</td>
<td>N.D</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>NaOH (2.2)</td>
<td>-</td>
<td>-78-40</td>
<td>12</td>
<td>DCM</td>
<td><5%</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>NaOH (2.2)</td>
<td>-</td>
<td>-78-40</td>
<td>12</td>
<td>DCM</td>
<td>N.D</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>K2CO3 (2.2)</td>
<td>-</td>
<td>-78-40</td>
<td>12</td>
<td>DCM</td>
<td>N.D</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-40</td>
<td>12</td>
<td>DCM</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td>1</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-40</td>
<td>12</td>
<td>DCM</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1.5</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-60</td>
<td>12</td>
<td>DCM</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1.5</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>12</td>
<td>DCM</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1.5</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>12</td>
<td>DCE</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1.5</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>12</td>
<td>toluene</td>
<td>60</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1.5</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>12</td>
<td>1,4-dioxane</td>
<td>39</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1.5</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>12</td>
<td>EtOAc</td>
<td>N.D</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1.5</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>12</td>
<td>CH3OH</td>
<td>N.D</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1.5</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>12</td>
<td>CH3NO2</td>
<td>N.D</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1.6</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>12</td>
<td>toluene</td>
<td>63</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>1.8</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>12</td>
<td>toluene</td>
<td>58</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2.0</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>12</td>
<td>toluene</td>
<td>63</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1.6</td>
<td>Cs2CO3 (2.2)</td>
<td>-</td>
<td>-78-70</td>
<td>14</td>
<td>toluene</td>
<td>65</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1.6</td>
<td>Cs2CO3 (2.0)</td>
<td>-</td>
<td>-78-70</td>
<td>14</td>
<td>toluene</td>
<td>63</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>1.6</td>
<td>Cs2CO3 (2.4)</td>
<td>-</td>
<td>-78-70</td>
<td>14</td>
<td>toluene</td>
<td>68</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>1.6</td>
<td>Cs2CO3 (2.6)</td>
<td>-</td>
<td>-78-70</td>
<td>14</td>
<td>toluene</td>
<td>72</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1.6</td>
<td>Cs2CO3 (2.6)</td>
<td>-</td>
<td>-78-80</td>
<td>14</td>
<td>toluene</td>
<td>67</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>1.6</td>
<td>Cs2CO3 (2.6)</td>
<td>-</td>
<td>-78-90</td>
<td>14</td>
<td>toluene</td>
<td>52</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>1.6</td>
<td>Cs2CO3 (2.6)</td>
<td>CsBr (0.5)</td>
<td>-78-70</td>
<td>14</td>
<td>toluene</td>
<td>83</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>1.6</td>
<td>Cs2CO3 (2.6)</td>
<td>Csl (0.5)</td>
<td>-78-70</td>
<td>14</td>
<td>toluene</td>
<td>73</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>1.6</td>
<td>Cs2CO3 (2.6)</td>
<td>CsF (0.5)</td>
<td>-78-70</td>
<td>14</td>
<td>toluene</td>
<td>85</td>
</tr>
</tbody>
</table>

a Reaction conditions: To a mixture of indole 1a (X equiv.), amide 2a (Y equiv.) and base (Z equiv.) in solvent (3.0 mL) was added T3O (2.0 equiv.) at -78 °C under an Ar atmosphere. After 20 min, the reaction mixture was stirred at the reported temperature.

b All reactions were carried out on 0.2 mmol scale. c The additive (0.5 equiv.) was added. d Isolated yields. DCM = dichloromethane, DCE = 1, 2-dichloroethane, Tf = trifluoromethanesulfonyl, TMS = trimethylsilyl.

S3
General procedure for the synthesis of desired 3-acylindoles

\[
\text{Indole} \quad + \quad \text{Amide} \quad \xrightarrow{\text{Cs}_2\text{CO}_3, \text{CsF, Tf}_2\text{O}} \quad \text{3-acylindole}
\]

The amide (0.32 mmol, 1.6 equiv), Cs$_2$CO$_3$ (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The indole (0.2 mmol, 1.0 equiv), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf$_2$O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 14 hours, the mixture was quenched by the saturated NaHCO$_3$ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na$_2$SO$_4$, concentrated in vacuum and subjected to column chromatography.
Further application

The amide 2a (0.32 mmol, 1.6 equiv.), Cs$_2$CO$_3$ (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The N,N-dimethyl aniline 4a (0.2 mmol, 1.0 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf$_2$O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 14 hours, the mixture was quenched by the saturated NaHCO$_3$ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na$_2$SO$_4$, concentrated in vacuum and subjected to column chromatography, afforded acylated aniline 5aa 7.59 mg in 15% isolated yield.

The amide 2a (0.32 mmol, 1.6 equiv.), Cs$_2$CO$_3$ (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The pyrrole 6a (0.2 mmol, 1.0 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf$_2$O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 14 hours, the mixture was quenched by the saturated NaHCO$_3$ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na$_2$SO$_4$, concentrated in vacuum and subjected to column chromatography, afforded product 7aa 22 mg in 55% isolated yield.
The amide 2a (0.32 mmol, 1.6 equiv.), Cs₂CO₃ (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The 1,2,3-trimethoxybenzene 8a (0.2 mmol, 1.0 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 14 hours, the mixture was quenched by the saturated NaHCO₃ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na₂SO₄, concentrated in vacuum and subjected to column chromatography, afforded product 9aa 16.2 mg in 27% isolated yield.

The amide 2a (0.32 mmol, 1.6 equiv.), Cs₂CO₃ (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The veratrole 10a (0.2 mmol, 1.0 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 14 hours, the mixture was quenched by the saturated NaHCO₃ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na₂SO₄, concentrated in vacuum and subjected to column chromatography, afforded product 11aa 6.48 mg in 12% isolated yield.
Mechanistic studies

a) Deuterated labelling experiment

The amide 2k (0.32 mmol, 1.6 equiv.), Cs$_2$CO$_3$ (0.52 mmol) and CsF (0.1 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The indole 1a (0.2 mmol, 1 equiv.) or 1a-3d (0.2 mmol, 1 equiv.), toluene (2.0 mL) were added and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf$_2$O (0.4 mmol) via syringe. After 20 minutes, the reaction mixture was heated to 70 °C. After 30 minutes, the mixture was quenched by the saturated NaHCO$_3$ solution and transferred to a separation funnel, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na$_2$SO$_4$, concentrated in vacuum and added p-bromotoluene (0.2 mmol) as internal standard, subjected to NMR tube. KIE value ($k_{H}/k_{D} = 1.11$) was determined by 1H NMR analysis (400 MHz, CDCl$_3$).
b) Monitoring experiment and NMR spectra

The first 13C NMR (100 MHz, CDCl$_3$) was standard spectrum of substrate 2k.

Four sets of the amide 2k (0.32 mmol, 1.6 equiv.), Cs$_2$CO$_3$ (0.52 mmol), CsF (0.1 mmol) were added to four dried round bottom flasks and put under an Ar atmosphere, respectively. The indole 1a (0.2 mmol, 1 equiv.), toluene (2.0 mL) were each added to four flasks and the solutions were cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf$_2$O (0.4 mmol) via syringe, respectively. All of four reactions kept under -78 °C for 20 minutes. Then, the first reaction was stopped without heating and concentrated in vacuum. The mixture was added to NMR tube and the second 13C NMR was acquired. The second reaction was heated at 70 °C for 15 minutes and stopped and concentrated in vacuum. The mixture was added to NMR tube and the third 13C NMR was acquired. The third reaction was heated for 1 hour and stopped and concentrated in vacuum. The mixture was added to NMR tube and the fourth 13C NMR was acquired. The fourth reaction was heated for 14 hours and stopped and concentrated in vacuum. The mixture was added to NMR tube and the fifth 13C NMR was acquired.

The sixth 13C NMR was standard spectrum of product 3ak.
c) Survey of intermediate I and analysis

The amide 2k (0.32 mmol, 1.6 equiv) and Cs$_2$CO$_3$ (0.52 mmol) were added to a dried round bottom flask and put under an Ar atmosphere. The toluene (2.0 mL) was added to the flask and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf$_2$O (0.4 mmol) via syringe. The reaction kept under -78 °C for 20 minutes. Then, the reaction was warmed to the room temperature and concentrated in vacuum. The mixture was added to NMR tube and the 13C NMR and 19F NMR were acquired as 2k+Tf$_2$O+Cs$_2$CO$_3$.

Analysis: Comparing the 13C NMR spectra of 2k+Tf$_2$O+Cs$_2$CO$_3$+indole 1a and 2k+Tf$_2$O+Cs$_2$CO$_3$ at low temperature labeling as 0 min, it was noticed that when the amide was treated with Tf$_2$O and Cs$_2$CO$_3$ without indole, the system was detected out only B signal, and that could be assigned to intermediate I, and when the system was added indole, the intermediate I could be transferred into intermediate II by the attack of indole in short time. Therefore, the signals B and C are relevant 13C NMR signal.
Analysis: Comparing the 19F NMR spectra of $2k +$Tf$_2$O+Cs_2CO$_3$ at low temperature and Tf$_2$O, it was confirmed that $2k$ could transfer into intermediate I.
$Zn + Cs_2CO_3 + TlF, 78^\circ C$

TlF
d) Recycling experiment of starting material 2k

The amide 2k (0.32 mmol, 1.6 equiv.), Cs₂CO₃ (0.52 mmol), CsF (0.1 mmol) were added to dried round bottom flask and put under an Ar atmosphere. The indole 1a (0.2 mmol, 1 equiv.), toluene (2.0 mL) were added to the flask and the solution was cooled to -78 °C, followed by addition of toluene (1.0 mL) solution of Tf₂O (0.4 mmol) via syringe. The reaction kept under -78 °C for 20 minutes, and then heated to 70 °C. After 14 h, the reaction was quenched by the saturated NaHCO₃ solution and mixture was transferred to separation funnels, diluted with DCM (15.0 mL) and the organic layer was washed with water (5.0 mL×2) and brine (5.0 mL), dried over anhydrous Na₂SO₄, concentrated in vacuum and subjected to column chromatography, afforded product 3ak 79% and recycled 47% of proportion of starting material 2k.
X-ray structures of Tetrazoles 3aa, 3al, 3ga, 3ua

The crystal structure of product 3aa

Crystallorgraphic data for compound 3aa (CCDC-1857322) has been deposited with Crystallorgraphic Data Centre. Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk)

Bond precision:

<table>
<thead>
<tr>
<th>Bond</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C</td>
<td>0.0020 A</td>
</tr>
</tbody>
</table>

Wavelength=1.54184

<table>
<thead>
<tr>
<th>Cell</th>
<th>a=22.0489(5)</th>
<th>b=15.0516(3)</th>
<th>c=18.1612(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>90</td>
<td>beta=108.711(3)</td>
<td>gamma=90</td>
</tr>
</tbody>
</table>

Temperature: 290 K

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Calculated</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>5708.6(2)</td>
<td>5708.6(2)</td>
</tr>
<tr>
<td>Space group</td>
<td>I 2/c</td>
<td>I 1 2/c 1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-I 2yc</td>
<td>-I 2yc</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C18 H17 N O</td>
<td>C18 H17 N O</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C18 H17 N O</td>
<td>C18 H17 N O</td>
</tr>
<tr>
<td>Mr</td>
<td>263.33</td>
<td>263.33</td>
</tr>
<tr>
<td>Dx,g cm-3</td>
<td>1.226</td>
<td>1.226</td>
</tr>
<tr>
<td>Z</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Mu (mm-1)</td>
<td>0.590</td>
<td>0.590</td>
</tr>
<tr>
<td>F000</td>
<td>2240.0</td>
<td>2240.0</td>
</tr>
<tr>
<td>F000'</td>
<td>2246.16</td>
<td></td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>26,18,22</td>
<td>26,18,22</td>
</tr>
<tr>
<td>Nref</td>
<td>5402</td>
<td>5245</td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.899,0.921</td>
<td>0.313,1.000</td>
</tr>
<tr>
<td>Tmin'</td>
<td>0.883</td>
<td></td>
</tr>
</tbody>
</table>

Correction method= # Reported T Limits: Tmin=0.313 Tmax=1.000 AbsCorr = MULTI-SCAN

Data completeness= 0.971
Theta(max)= 69.960

R(reflections)= 0.0416(4402)
wR2(reflections)= 0.1155(5245)

S = 1.034
Npar= 363

The ellipsoid contour percent probability level is 30% in the caption of the thermal ellipsoid plot.
The crystal structure of product 3al

Crystallorgraphic data for compound 3al (CCDC-1857189) has been deposited with Crystallorgraphic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk)

The ellipsoid contour percent probability level is 30% in the caption of the thermal ellipsoid plot.

<table>
<thead>
<tr>
<th>Bond precision:</th>
<th>C-C = 0.0051 Å</th>
<th>Wavelength=0.71073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell:</td>
<td>a=9.2569(18)</td>
<td>b=15.608(2)</td>
</tr>
<tr>
<td></td>
<td>alpha=90</td>
<td>beta=105.432(19)</td>
</tr>
<tr>
<td>Temperature:</td>
<td>232 K</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>1517.0(5)</td>
<td>1517.1(4)</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/n</td>
<td>P 1 21/n 1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 2yn</td>
<td>-P 2yn</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C19 H19 N O</td>
<td>C19 H19 N O</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C19 H19 N O</td>
<td>C19 H19 N O</td>
</tr>
<tr>
<td>Mr</td>
<td>277.35</td>
<td>277.35</td>
</tr>
<tr>
<td>Dx,g cm⁻³</td>
<td>1.214</td>
<td>1.214</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mu (mm⁻¹)</td>
<td>0.074</td>
<td>0.074</td>
</tr>
<tr>
<td>F000</td>
<td>592.0</td>
<td>592.0</td>
</tr>
<tr>
<td>F000'</td>
<td>592.23</td>
<td></td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>11,19,13</td>
<td>11,19,13</td>
</tr>
<tr>
<td>Nref</td>
<td>3000</td>
<td>2987</td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.983,0.990</td>
<td>0.809,1.000</td>
</tr>
<tr>
<td>Tmin'</td>
<td>0.983</td>
<td></td>
</tr>
<tr>
<td>Correction method= # Reported T Limits: Tmin=0.809 Tmax=1.000 AbsCorr = MULTI-SCAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data completeness= 0.996</td>
<td>Theta(max)= 26.020</td>
<td></td>
</tr>
<tr>
<td>R(reflections)= 0.0812(1790)</td>
<td>wR2(reflections)= 0.2195(2987)</td>
<td></td>
</tr>
<tr>
<td>S = 1.106</td>
<td>Npar= 192</td>
<td></td>
</tr>
</tbody>
</table>
The crystal structure of product 3ga

Crystalllographic data for compound 3ga (CCDC-1857188) has been deposited with Crystalllographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk)

Bond precision: C-C = 0.0046 Å
Wavelength=1.54184 Å

Cell:
- a=8.4795(3) Å
- b=11.3762(4) Å
- c=16.2210(5) Å
- alpha=90°
- beta=92.399(3)°
- gamma=90°

Temperature: 293 K

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Calculated</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>1563.38(9)</td>
<td>1563.38(9)</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/n</td>
<td>P 1 21/n 1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 2yn</td>
<td>-P 2yn</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C18 H16 Br N O</td>
<td>C18 H16 Br N O</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C18 H16 Br N O</td>
<td>C18 H16 Br N O</td>
</tr>
<tr>
<td>Mr</td>
<td>342.22</td>
<td>342.23</td>
</tr>
<tr>
<td>Dx,g cm^-3</td>
<td>1.454</td>
<td>1.454</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mu (mm^-1)</td>
<td>3.558</td>
<td>3.558</td>
</tr>
<tr>
<td>F000</td>
<td>696.0</td>
<td>696.0</td>
</tr>
<tr>
<td>F000'</td>
<td>694.83</td>
<td></td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>10,13,19</td>
<td>10,13,19</td>
</tr>
<tr>
<td>Nref</td>
<td>2757</td>
<td>2685</td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.808,0.867</td>
<td>0.896,1.000</td>
</tr>
<tr>
<td>Tmin'</td>
<td>0.780</td>
<td></td>
</tr>
</tbody>
</table>

Correction method= # Reported T Limits: Tmin=0.896 Tmax=1.000 AbsCorr = MULTI-SCAN

Data completeness= 0.974
Theta(max)= 66.590
R(reflections)= 0.0430(2226)
wr2(reflections)= 0.1183(2685)
S = 1.059
Npar= 191
The crystal structure of product 3ua

Crystallographic data for compound 3ua (CCDC-1857187) has been deposited with Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk)

The ellipsoid contour percent probability level is 30% in the caption of the thermal ellipsoid plot.

<table>
<thead>
<tr>
<th>Bond precision:</th>
<th>C-C = 0.0034 Å</th>
<th>Wavelength=0.71073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell:</td>
<td>a=9.6173(10)</td>
<td>b=12.7178(10)</td>
</tr>
<tr>
<td></td>
<td>alpha=90</td>
<td>beta=95.476(10)</td>
</tr>
<tr>
<td>Temperature:</td>
<td>295 K</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>1370.1(2)</td>
<td>1370.1(2)</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/c</td>
<td>P 1 21/c 1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 2ybc</td>
<td>-P 2ybc</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C18 H17 N O</td>
<td>C18 H17 N O</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C18 H17 N O</td>
<td>C18 H17 N O</td>
</tr>
<tr>
<td>Mr</td>
<td>263.33</td>
<td>263.33</td>
</tr>
<tr>
<td>Dx,g cm-3</td>
<td>1.277</td>
<td>1.277</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mu (mm-1)</td>
<td>0.079</td>
<td>0.079</td>
</tr>
<tr>
<td>F000</td>
<td>560.0</td>
<td>560.0</td>
</tr>
<tr>
<td>F000'</td>
<td>560.22</td>
<td></td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>11,15,13</td>
<td>11,15,13</td>
</tr>
<tr>
<td>Nref</td>
<td>2694</td>
<td>2690</td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.987,0.991</td>
<td>0.627,1.000</td>
</tr>
<tr>
<td>Tmin'</td>
<td>0.987</td>
<td></td>
</tr>
<tr>
<td>Correction method= # Reported T Limits: Tmin=0.627 Tmax=1.000 AbsCorr = MULTI-SCAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data completeness= 0.999</td>
<td>Theta(max)= 26.020</td>
<td></td>
</tr>
<tr>
<td>R(reflections)= 0.0608(1744)</td>
<td>wR2(reflections)= 0.1982(2690)</td>
<td></td>
</tr>
<tr>
<td>S = 1.041</td>
<td>Npar= 182</td>
<td></td>
</tr>
</tbody>
</table>
Characterization of compounds

(3aa) 1-(1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

brownish red crystal, 44.7 mg, 85%, m.p. 57-59 °C

1H NMR (400 MHz, CDCl$_3$) δ 8.43 – 8.38 (m, 1H), 7.64 (s, 1H), 7.34 – 7.25 (m, 7H), 7.23 – 7.16 (m, 1H), 3.79 (s, 3H), 3.19 – 3.14 (m, 2H), 3.14 – 3.07 (m, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 194.4, 141.7, 137.3, 135.2, 128.4, 126.2, 125.9, 123.2, 122.5, 116.3, 109.5, 41.6, 33.4, 30.7.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{18}$H$_{17}$NO) requires m/z 264.1383, found m/z 264.1383.

(3ab) 1-(1-methyl-1H-indol-3-yl)propan-1-one

transparent crystal, 21.3 mg, 57%, m.p. 74-76 °C

1H NMR (400 MHz, CDCl$_3$) δ 8.50 – 8.28 (m, 1H), 7.69 (s, 1H), 7.44 – 7.27 (m, 3H), 3.81 (s, 3H), 2.86 (q, J = 7.4 Hz, 2H), 1.25 (t, J = 7.4 Hz, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 196.3, 137.3, 134.9, 126.2, 123.1, 122.3, 116.1, 109.5, 33.4, 32.8, 8.9.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{12}$H$_{13}$NO) requires m/z 188.1070, found m/z 188.1069.

(3ac) 1-(1-methyl-1H-indol-3-yl)butan-1-one

crimson oily liquid, 26.1 mg, 65%

1H NMR (400 MHz, CDCl$_3$) δ 8.42 – 8.37 (m, 1H), 7.68 (s, 1H), 7.33 – 7.27 (m, 3H), 3.80 (s, 3H), 2.79 (t, J = 7.2 Hz, 2H), 1.85 – 1.75 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 195.7, 137.3, 135.1, 126.2, 123.1, 122.5, 122.3, 116.5, 109.5, 41.8, 33.3, 18.6, 14.0.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{13}$H$_{15}$NO) requires m/z 202.1226, found m/z 202.1225.

(3ad) 1-(1-methyl-1H-indol-3-yl)pentan-1-one
bright red liquid, 25.0 mg, 58%

\[^1\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 8.42 - 8.36 \ (m, 1H), 7.69 \ (s, 1H), 7.33 - 7.27 \ (m, 3H), 3.82 \ (s, 3H), 2.82 \ (t, J = 8.0 \text{ Hz, 2H}), 1.80 - 1.71 \ (m, 2H), 1.48 - 1.37 \ (m, 2H), 0.95 \ (t, J = 7.2 \text{ Hz, 3H}). \]

\[^{13}\text{C NMR} \ (100 \text{ MHz, CDCl}_3) \delta 195.9, 137.4, 135.1, 126.3, 123.2, 122.6, 122.4, 116.5, 109.5, 39.6, 33.4, 27.3, 22.6, 13.9. \]

HRMS (ESI+): exact mass calculated for [M+H]+ (C14H17NO) requires m/z 216.1383, found m/z 216.1382.

(3ae) 1-(1-methyl-1H-indol-3-yl)hexan-1-one

crimson liquid, 24.3 mg, 53%

\[^1\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 8.43 - 8.37 \ (m, 1H), 7.70 \ (s, 1H), 7.30 \ (dt, J = 7.6, 2.4 \text{ Hz, 3H}), 3.83 \ (s, 3H), 2.82 \ (t, J = 7.8 \text{ Hz, 2H}), 1.82 - 1.73 \ (m, 2H), 1.42 - 1.32 \ (m, 4H), 0.95 - 0.87 \ (m, 3H). \]

\[^{13}\text{C NMR} \ (100 \text{ MHz, CDCl}_3) \delta 195.9, 137.4, 135.1, 126.3, 123.2, 122.6, 122.4, 116.5, 109.5, 39.9, 33.4, 27.3, 24.9, 22.5, 13.9. \]

HRMS (ESI+): exact mass calculated for [M+H]+ (C15H19NO) requires m/z 230.1539, found m/z 230.1539.

(3af) 1-(1-methyl-1H-indol-3-yl)heptan-1-one

aubergine liquid, 27.7 mg, 57%

\[^1\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 8.41 - 8.37 \ (m, 1H), 7.69 \ (s, 1H), 7.33 - 7.27 \ (m, 3H), 3.81 \ (s, 3H), 2.84 - 2.79 \ (m, 2H), 1.82 - 1.72 \ (m, 2H), 1.42 - 1.35 \ (m, 2H), 1.35 - 1.29 \ (m, 4H), 0.91 - 0.86 \ (m, 3H). \]

\[^{13}\text{C NMR} \ (100 \text{ MHz, CDCl}_3) \delta 195.9, 137.4, 135.1, 126.3, 123.1, 122.5, 122.4, 116.5, 109.5, 39.9, 33.4, 31.7, 29.2, 25.2, 22.5, 14.0. \]

HRMS (ESI+): exact mass calculated for [M+H]+ (C16H21NO) requires m/z 244.1696, found m/z 244.1696.

(3ag) 4-methyl-1-(1-methyl-1H-indol-3-yl)pentan-1-one
rufous liquid, 31.1 mg, 68%

1H NMR (400 MHz, CDCl$_3$) δ 8.41 – 8.37 (m, 1H), 7.68 (s, 1H), 7.32 – 7.27 (m, 3H), 3.81 (s, 3H), 2.85 – 2.79 (m, 2H), 1.70 – 1.63 (m, 3H), 0.95 (d, $J = 6.0$ Hz, 6H).

13C NMR (100 MHz, CDCl$_3$) δ 196.1, 137.4, 135.1, 126.3, 123.2, 122.5, 122.4, 116.4, 109.5, 37.9, 34.1, 33.4, 27.9, 22.4.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{15}$H$_{19}$NO) requires m/z 230.1539, found m/z 230.1539.

(3ah) 3-cyclopentyl-1-(1-methyl-1H-indol-3-yl)propan-1-one

red liquid, 31.1 mg, 61%

1H NMR (400 MHz, CDCl$_3$) δ 8.42 – 8.37 (m, 1H), 7.69 (s, 1H), 7.33 – 7.27 (m, 3H), 3.82 (s, 3H), 2.86 – 2.80 (m, 2H), 1.87 – 1.74 (m, 5H), 1.68 – 1.46 (m, 4H), 1.20 – 1.10 (m, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 196.0, 137.4, 135.1, 135.0, 126.3, 123.1, 122.6, 122.4, 116.4, 109.4, 39.9, 39.2, 33.4, 32.5, 31.5, 25.1.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{17}$H$_{21}$NO) requires m/z 256.1696, found m/z 256.1696.

(3ai) 3,5,5-trimethyl-1-(1-methyl-1H-indol-3-yl)hexan-1-one

aubergine liquid, 35.2 mg, 65%

1H NMR (400 MHz, CDCl$_3$) δ 8.44 – 8.39 (m, 1H), 7.66 (s, 1H), 7.32 – 7.27 (m, 3H), 3.81 (s, 3H), 2.76 (dd, $J = 14.8$, 6.0 Hz, 1H), 2.66 (dd, $J = 14.8$, 8.0 Hz, 1H), 2.36 – 2.26 (m, 1H), 1.36 (dd, $J = 14.0$, 4.0 Hz, 1H), 1.17 (dd, $J = 14.0$, 6.4 Hz, 1H), 1.01 (d, $J = 6.4$ Hz, 3H), 0.92 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 195.5, 137.4, 135.2, 126.3, 123.2, 122.6, 122.4, 117.3, 109.4, 51.1, 49.5, 33.4, 31.1, 30.0, 27.0, 23.0.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{18}$H$_{25}$NO) requires m/z 272.2009, found m/z 272.2009.

(3aj) 2-methyl-1-(1-methyl-1H-indol-3-yl)propan-1-one
crimson liquid, 18.1 mg, 45%

1H NMR (400 MHz, CDCl$_3$) δ 8.51 – 8.31 (m, 1H), 7.73 (s, 1H), 7.40 – 7.27 (m, 3H), 3.84 (s, 3H), 3.31 (p, $J = 6.8$ Hz, 1H), 1.25 (d, $J = 6.8$ Hz, 6H).

13C NMR (100 MHz, CDCl$_3$) δ 200.8, 137.4, 135.0, 126.5, 123.2, 123.2, 122.7, 122.4, 115.1, 109.4, 37.0, 33.4, 19.7.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{13}$H$_{15}$NO) requires m/z 202.1226, found m/z 202.1226.

(3ak) 1-(1-methyl-1H-indol-3-yl)-2-phenylethan-1-one

white crystal, 39.34 mg, 79%, m.p. 112-113 ºC

1H NMR (400 MHz, CDCl$_3$) δ 8.50 – 8.33 (m, 1H), 7.69 (s, 1H), 7.34 – 7.26 (m, 7H), 7.24 – 7.19 (m, 1H), 4.09 (s, 2H), 3.75 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 192.5, 137.3, 135.8, 135.7, 129.2, 128.5, 126.5, 126.5, 123.4, 122.6, 122.6, 116.0, 109.5, 46.8, 33.4.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{17}$H$_{19}$NO) requires m/z 250.1226, found m/z 250.1225.

(3al) 1-(1-methyl-1H-indol-3-yl)-2-phenylbutan-1-one

pink crystal, 35.0 mg, 63%, m.p. 166-168 ºC

1H NMR (400 MHz, CDCl$_3$) δ 8.49 – 8.44 (m, 1H), 7.69 (s, 1H), 7.39 (d, $J = 8.0$ Hz, 2H), 7.30 – 7.23 (m, 5H), 7.18 (t, $J = 7.2$ Hz, 1H), 4.17 (t, $J = 7.3$ Hz, 1H), 3.73 (s, 3H), 2.34 – 2.22 (m, 1H), 1.94 – 1.82 (m, 1H), 0.93 (t, $J = 7.2$ Hz, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 195.2, 141.1, 137.3, 135.5, 135.3, 128.5, 127.9, 123.3, 122.8, 122.5, 116.4, 109.3, 57.0, 33.4, 26.9, 12.5.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{19}$H$_{19}$NO) requires m/z 278.1539, found m/z 278.1540.

(3am) 2,2-dimethyl-1-(1-methyl-1H-indol-3-yl)propan-1-one
brown crystal, 11 mg, 25%, m.p. 115-116 °C

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 8.57 – 8.45 (m, 1H), 7.79 (s, 1H), 7.34 – 7.28 (m, 3H), 3.85 (s, 3H), 1.42 (s, 9H).

\(^13\)C NMR (100 MHz, Chloroform-\(d\)) \(\delta\) 201.98, 136.42, 128.22, 123.37, 123.19, 122.45, 112.70, 109.17, 44.05, 33.46, 28.94.

HRMS (ESI+): exact mass calculated for [M+H]\(^+\) (C\(_{14}\)H\(_{17}\)NO) requires \(m/z\) 216.1383, found \(m/z\) 216.1382.

(3an) cyclobutyl(1-methyl-1H-indol-3-yl)methanone

light red crystal, 28.5 mg, 67%, m.p. 89-90 °C

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.44 – 8.38 (m, 1H), 7.59 (s, 1H), 7.33 – 7.27 (m, 3H), 3.80 (s, 4H), 2.53 – 2.42 (m, 2H), 2.29 – 2.19 (m, 2H), 2.12 – 1.99 (m, 1H), 1.97 – 1.87 (m, 1H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 196.6, 137.3, 134.9, 126.4, 123.1, 122.5, 114.7, 109.4, 43.0, 33.4, 25.2, 18.3.

HRMS (ESI+): exact mass calculated for [M+H]\(^+\) (C\(_{14}\)H\(_{15}\)NO) requires \(m/z\) 214.1226, found \(m/z\) 214.1227.

(3ao) cyclopentyl(1-methyl-1H-indol-3-yl)methanone

dark brown liquid, 24.5 mg, 54%

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.45 – 8.40 (m, 1H), 7.70 (s, 1H), 7.34 – 7.26 (m, 3H), 3.82 (s, 3H), 3.54 – 3.46 (m, 1H), 2.03 – 1.85 (m, 4H), 1.83 – 1.73 (m, 2H), 1.69 – 1.60 (m, 2H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 198.5, 137.4, 135.1, 126.5, 123.1, 122.6, 122.4, 116.2, 109.4, 47.8, 33.4, 30.5, 26.3.

HRMS (ESI+): exact mass calculated for [M+H]\(^+\) (C\(_{15}\)H\(_{17}\)NO) requires \(m/z\) 228.1383, found \(m/z\) 228.1379.

(3ap) cyclohexyl(1-methyl-1H-indol-3-yl)methanone
aubergine crystal, 24.1 mg, 50%, m.p. 133-135 °C

1H NMR (400 MHz, CDCl$_3$) δ 8.44 – 8.36 (m, 1H), 7.73 (s, 1H), 7.35 – 7.27 (m, 3H), 3.83 (s, 3H), 3.06 – 2.97 (m, 1H), 1.94 – 1.82 (m, 4H), 1.77 – 1.70 (m, 1H), 1.68 – 1.56 (m, 2H), 1.45 – 1.25 (m, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 199.4, 137.5, 134.9, 126.5, 123.2, 122.69, 122.44, 115.39, 109.49, 47.78, 33.46, 33.40, 29.8, 26.0, 25.9.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{16}$H$_{19}$NO) requires m/z 242.1539, found m/z 242.1539.

(3aq) (1-methyl-1H-indol-3-yl)(phenyl)methanone

light red crystal, 18.3 mg, 39%, m.p. 108-109 °C

1H NMR (400 MHz, CDCl$_3$) δ 8.55 – 8.39 (m, 1H), 7.82 (s, 1H), 7.80 (s, 1H), 7.57 – 7.44 (m, 4H), 7.39 – 7.32 (m, 3H), 3.83 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 190.8, 140.8, 137.9, 137.9, 137.4, 131.0, 128.6, 128.2, 127.1, 123.6, 122.6, 115.4, 109.5, 33.5.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{16}$H$_{13}$NO) requires m/z 236.1070, found m/z 236.1069.

(3ar) 4-(1-methyl-1H-indole-3-carbonyl)benzonitrile

brownish crystal, 14.6 mg, 28%, m.p. 204-206 °C

1H NMR (400 MHz, CDCl$_3$) δ 8.41 – 8.36 (m, 1H), 7.89 – 7.84 (m, 2H), 7.79 – 7.74 (m, 2H), 7.47 (s, 1H), 7.42 – 7.35 (m, 3H), 3.87 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 188.6, 144.6, 137.9, 137.6, 132.8, 129.0, 126.8, 124.1, 123.2, 122.6, 118.3, 115.1, 114.4, 109.8, 33.7.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{17}$H$_{12}$N$_2$O) requires m/z 261.1022, found m/z 261.1025.

(3as)1-methyl-1H-indole-3-carbaldehyde

brownish crystal, 25 mg, 79%, m.p. 71-73 °C

1H NMR (400 MHz, Chloroform-d) δ 9.95 (s, 1H), 8.32 – 8.27 (m, 1H), 7.62 (s, 1H), 7.36 – 7.29 (m, 3H), 3.83 (s, 3H).

13C NMR (100 MHz, Chloroform-d) δ 184.3, 139.2, 137.8, 125.2, 123.9, 122.8, 121.9, 117.9, 109.8,
33.6.

HRMS (ESI+): exact mass calculated for [M+H]+ (C_{10}H_{9}NO) requires m/z 160.0757, found m/z 160.0759.

(3ba) 1-(4-fluoro-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

![Chemical structure of 1-(4-fluoro-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one]

brownish red crystal, 25.9 mg, 46%, m.p. 80-82 °C

\[^1H \text{ NMR (400 MHz, CDCl}_3 \delta 7.69 \text{ (s, 1H), 7.31 – 7.26 (m, 4H), 7.25 – 7.15 (m, 2H), 7.11 (d, J = 8.0 Hz, 1H), 6.99 – 6.93 (m, 1H), 3.80 (s, 3H), 3.31 – 3.25 (m, 2H), 3.12 – 3.07 (m, 2H).} \]

\[^{13}C \text{ NMR (100 MHz, CDCl}_3 \delta 193.6, 157.6, 155.1, 141.8, 140.3 (d, J = 11.0 Hz), 135.8, 128.4 (d, J = 8.0 Hz), 125.8, 123.8 (d, J = 8.0 Hz), 116.3 (d, J = 5.0 Hz), 113.8 (d, J = 20.0 Hz), 108.1 (d, J = 22.0 Hz), 105.9 (d, J = 4.0 Hz), 42.5 (d, J = 7.0 Hz), 33.8, 30.7.} \]

HRMS (ESI+): exact mass calculated for [M+H]+ (C_{18}H_{16}FNNO) requires m/z 282.1289, found m/z 282.1288.

(3ca) 1-(4-chloro-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

![Chemical structure of 1-(4-chloro-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one]

light yellow crystal, 42.1 mg, 71%, m.p. 82-84 °C

\[^1H \text{ NMR (400 MHz, CDCl}_3 \delta 7.49 \text{ (s, 1H), 7.29 – 7.22 (m, 5H), 7.20 – 7.14 (m, 3H), 3.72 (s, 3H), 3.20 – 3.13 (m, 2H), 3.12 – 3.04 (m, 2H).} \]

\[^{13}C \text{ NMR (100 MHz, CDCl}_3 \delta 193.7, 141.6, 139.1, 135.7, 128.4, 128.8, 127.2, 125.9, 123.7, 123.6, 123.3, 117.4, 108.3, 43.5, 33.5, 30.9.} \]

HRMS (ESI+): exact mass calculated for [M+H]+ (C_{18}H_{16}ClNO) requires m/z 298.0993, found m/z 298.0993.

(3da) 1-(1,4-dimethyl-1H-indol-3-yl)-3-phenylpropan-1-one

![Chemical structure of 1-(1,4-dimethyl-1H-indol-3-yl)-3-phenylpropan-1-one]
light yellow crystal, 31.1 mg, 56%, m.p. 95-96 °C

\[^1\text{H NMR (400 MHz, CDCl}_3 \] \(\delta \) 7.58 (s, 1H), 7.31 – 7.28 (m, 1H), 7.27 – 7.23 (m, 3H), 7.22 – 7.16 (m, 2H), 7.10 (d, \(J = 8.0 \) Hz, 1H), 7.04 (d, \(J = 7.2 \) Hz, 1H), 3.72 (s, 3H), 3.18 – 3.12 (m, 2H), 3.11 – 3.05 (m, 2H), 2.85 (s, 3H).

\[^{13}\text{C NMR (100 MHz, CDCl}_3 \] \(\delta \) 193.5, 141.7, 138.2, 136.1, 133.6, 128.4, 125.9, 125.0, 124.3, 123.5, 118.2, 107.0, 42.3, 33.4, 31.2, 23.0.

HRMS (ESI+): exact mass calculated for [M+H]+ (C\(_{18}\)H\(_{17}\)NO) requires \(m/z \) 278.1539, found \(m/z \) 278.1539.

\(^1\text{H NMR (400 MHz, CDCl}_3 \) \(\delta \) 7.61 (s, 1H), 7.30 – 7.22 (m, 5H), 7.20 – 7.15 (m, 1H), 6.95 – 6.91 (m, 1H), 6.68 (d, \(J = 7.6 \) Hz, 1H), 3.91 (s, 3H), 3.74 (s, 3H), 3.42 – 3.37 (m, 2H), 3.10 – 3.04 (m, 2H).

\[^{13}\text{C NMR (100 MHz, CDCl}_3 \] \(\delta \) 196.2, 153.9, 142.1, 139.3, 134.4, 128.3, 128.3, 125.7, 123.8, 118.0, 115.1, 103.0, 102.5, 55.3, 43.6, 33.5, 31.1.

HRMS (ESI+): exact mass calculated for [M+H]+ (C\(_{19}\)H\(_{19}\)NO\(_2\)) requires \(m/z \) 294.1489, found \(m/z \) 294.1485.

gray white crystal, 26.4 mg, 45%, m.p. 81-82 °C

\[^1\text{H NMR (400 MHz, CDCl}_3 \] \(\delta \) 8.38 – 8.36 (m, 1H), 7.55 (d, \(J = 2.8 \) Hz, 1H), 7.31 – 7.28 (m, 1H), 7.27 – 7.23 (m, 3H), 7.21 – 7.16 (m, 2H), 7.16 – 7.12 (m, 1H), 3.73 (s, 3H), 3.11 – 3.05 (m, 4H).

\[^{13}\text{C NMR (100 MHz, CDCl}_3 \] \(\delta \) 194.0, 141.5, 135.9, 135.6, 128.4, 128.4, 127.1, 126.0, 123.5, 121.9, 115.7, 110.5, 41.3, 33.5, 30.5.

HRMS (ESI+): exact mass calculated for [M+H]+ (C\(_{18}\)H\(_{16}\)ClNO) requires \(m/z \) 298.0991, found \(m/z \) 298.0991.

rufous crystal, 33.3 mg, 56%, m.p. 130-132 °C

\[^1\text{H NMR (400 MHz, CDCl}_3 \] \(\delta \) 8.38 – 8.36 (m, 1H), 7.55 (d, \(J = 2.8 \) Hz, 1H), 7.31 – 7.28 (m, 1H), 7.27 – 7.23 (m, 3H), 7.21 – 7.16 (m, 2H), 7.16 – 7.12 (m, 1H), 3.73 (s, 3H), 3.11 – 3.05 (m, 4H).

\[^{13}\text{C NMR (100 MHz, CDCl}_3 \] \(\delta \) 194.0, 141.5, 135.9, 135.6, 128.4, 128.4, 127.1, 126.0, 123.5, 121.9, 115.7, 110.5, 41.3, 33.5, 30.5.

HRMS (ESI+): exact mass calculated for [M+H]+ (C\(_{18}\)H\(_{16}\)ClNO) requires \(m/z \) 298.0991, found \(m/z \) 298.0991.

(3ea) 1-(4-methoxy-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

(3fa) 1-(5-chloro-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

(3ga) 1-(5-bromo-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one
light pink crystal, 46.4 mg, 68%, m.p. 142-144 °C

\[\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 8.53 - 8.50 (m, 1H), 7.50 (d, J = 4.8 Hz, 1H), 7.33 - 7.27 (m, 2H), 7.27 - 7.23 (m, 3H), 7.21 - 7.16 (m, 1H), 7.09 - 7.04 (m, 1H), 3.71 (s, 3H), 3.09 - 3.05 (m, 4H).

\[\text{13C NMR (100 MHz, CDCl}_3\text{)} \delta 193.9, 141.5, 135.7, 128.4, 127.6, 125.0, 124.9, 116.1, 115.66, 110.98, 41.31, 33.5, 30.5.

HRMS (ESI+): exact mass calculated for [M+H]\(^+\) \(\text{C}_{18}\text{H}_{16}\text{BrNO}\) requires \(m/z\) 342.0488, found \(m/z\) 342.0486.

(3ha) 1-(5-methoxy-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

dark red crystal, 32.3 mg, 55%, m.p. 72-74 °C

\[\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.93 (d, J = 2.8 Hz, 1H), 7.56 (s, 1H), 7.30 - 7.25 (m, 4H), 7.21 - 7.16 (m, 2H), 6.93 (dd, J = 8.8, 2.8 Hz, 1H), 3.89 (s, 3H), 3.74 (s, 3H), 3.15 - 3.07 (m, 4H).

\[\text{13C NMR (100 MHz, CDCl}_3\text{)} \delta 194.4, 156.4, 141.7, 135.3, 132.3, 128.4, 127.1, 125.8, 115.9, 113.9, 113.8, 110.4, 110.3, 103.6, 55.6, 41.3, 33.7, 30.7.

HRMS (ESI+): exact mass calculated for [M+H]\(^+\) \(\text{C}_{19}\text{H}_{19}\text{NO}_2\) requires \(m/z\) 294.1482, found \(m/z\) 294.1490.

(3ia) 1-(6-fluoro-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

dark red crystal, 37.1 mg, 66%, m.p. 82-84 °C

\[\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 8.32 (dd, J = 8.8, 5.6 Hz, 1H), 7.56 (s, 1H), 7.31 - 7.22 (m, 4H), 7.21 - 7.16 (m, 1H), 7.06 - 7.00 (m, 1H), 6.94 (dd, J = 9.2, 2.0 Hz, 1H), 3.70 (s, 3H), 3.14 - 3.04 (m, 4H).
\textbf{13C NMR (100 MHz, CDCl\textsubscript{3})} \ \delta 194.2, 161.5, 159.1, 141.61, 137.5 (d, J = 12.0 Hz), 135.44, 128.4 (d, J = 4.0 Hz), 125.9, 123.6 (d, J = 10.0 Hz), 122.6, 116.4, 110.9 (d, J = 24.0 Hz), 96.2 (d, J = 26.0 Hz), 41.3, 33.4, 30.6.

HRMS (ESI+): exact mass calculated for [M+H]+ \ ((C\textsubscript{18}H\textsubscript{16}FN\textsubscript{5}O) requires \(m/z\) 282.1289, found \(m/z\) 282.1290.

\textbf{(3ja) 1-(6-bromo-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one}

\begin{figure}
\centering
\includegraphics[width=0.2\textwidth]{image.png}
\end{figure}

pink crystal, 52.5 mg, 77%, m.p. 127-128 \degree C

\textbf{1H NMR (400 MHz, CDCl\textsubscript{3})} \ \delta 8.24 (d, J = 8.4 Hz, 1H), 7.55 (s, 1H), 7.43 (d, J = 1.6 Hz, 1H), 7.37 (dd, J = 8.4, 1.6 Hz, 1H), 7.31 – 7.23 (m, 4H), 7.21 – 7.16 (m, 1H), 3.72 (s, 3H), 3.15 – 3.05 (m, 2H), 3.10 – 3.05 (m, 2H).

\textbf{13C NMR (100 MHz, CDCl\textsubscript{3})} \ \delta 194.2, 141.5, 138.1, 135.4, 128.4, 126.0, 125.7, 125.0, 123.8, 116.9, 116.4, 112.7, 41.5, 33.5, 30.6.

HRMS (ESI+): exact mass calculated for [M+H]+ \ ((C\textsubscript{18}H\textsubscript{16}BrNO) requires \(m/z\) 342.0488, found \(m/z\) 342.0486.

\textbf{(3ka) 1-(6-methoxy-1-methyl-1H-indol-3-yl)-3-phenylpropan-1-one}

\begin{figure}
\centering
\includegraphics[width=0.2\textwidth]{image.png}
\end{figure}

crimson liquid, 20.0 mg, 34%

\textbf{1H NMR (400 MHz, CDCl\textsubscript{3})} \ \delta 8.26 (dd, J = 8.8, 0.4 Hz, 1H), 7.52 (d, J = 1.2 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.27 – 7.24 (m, 3H), 7.21 – 7.16 (m, 1H), 6.94 (dd, J = 8.8, 2.0 Hz, 1H), 6.74 (d, J = 2.0 Hz, 1H), 3.86 (s, 3H), 3.72 (s, 3H), 3.15 – 3.05 (m, 4H).

\textbf{13C NMR (100 MHz, CDCl\textsubscript{3})} \ \delta 194.5, 157.3, 141.9, 138.4, 134.5, 128.5, 126.0, 123.4, 120.5, 116.5, 111.9, 93.4, 55.8, 41.5, 33.5, 31.0.

HRMS (ESI+): exact mass calculated for [M+H]+ \ ((C\textsubscript{19}H\textsubscript{15}NO\textsubscript{2}) requires \(m/z\) 294.1489, found \(m/z\) 294.1485.

\textbf{(3la) 1-(1-benzyl-5-bromo-1H-indol-3-yl)-3-phenylpropan-1-one}
nacarat oil, 27.5 mg, 33%

\[^1H \text{NMR} \ (400 \text{ MHz, CDCl}_3) \delta 8.60 \ (d, J = 1.6 \text{ Hz, 1H}), 7.63 \ (s, 1H), 7.34 - 7.26 \ (m, 5H), 7.26 - 7.22 \ (m, 3H), 7.20 - 7.15 \ (m, 1H), 7.12 - 7.07 \ (m, 3H), 5.26 \ (s, 2H), 3.15 - 3.10 \ (m, 2H), 3.10 - 3.05 \ (m, 2H). \]

\[^13C \text{NMR} \ (100 \text{ MHz, CDCl}_3) \delta 194.2, 141.5, 135.6, 135.2, 135.1, 129.1, 128.4, 128.3, 128.0, 126.9, 126.5, 126.0, 125.3, 116.4, 111.5, 50.9, 41.5, 30.6. \]

HRMS (ESI+): exact mass calculated for [M+H]\(^+\) \((C_{24}H_{20}BrNO) \) requires \(m/z \) 418.0801, found \(m/z \) 418.0802.

(3ma) 1-(1H-indol-3-yl)-3-phenylpropan-1-one

rufous powder, 21.4 mg, 43%, m.p. 157-159 °C

\[^1H \text{NMR} \ (400 \text{ MHz, DMSO-d}_6) \delta 11.90 \ (s, 1H), 8.35 \ (d, J = 3.2 \text{ Hz, 1H}), 8.22 - 8.19 \ (m, 1H), 7.47 - 7.44 \ (m, 1H), 7.32 - 7.24 \ (m, 4H), 7.23 - 7.14 \ (m, 3H), 3.22 - 3.16 \ (m, 2H), 3.00 - 2.95 \ (m, 2H). \]

\[^13C \text{NMR} \ (100 \text{ MHz, DMSO-d}_6) \delta 194.3, 141.7, 136.7, 133.9, 128.4, 128.3, 125.8, 125.4, 122.7, 121.7, 121.4, 116.3, 112.1, 30.4. \]

HRMS (ESI+): exact mass calculated for [M+H]\(^+\) \((C_{17}H_{15}NO) \) requires \(m/z \) 250.1226, found \(m/z \) 250.1225.

(3na) 1-(4-chloro-1H-indol-3-yl)-3-phenylpropan-1-one

dark red liquid, 27.7 mg, 49%

\[^1H \text{NMR} \ (400 \text{ MHz, DMSO-d}_6) \delta 12.16 \ (s, 1H), 8.37 \ (d, J = 3.1 \text{ Hz, 1H}), 7.46 - 7.41 \ (m, 1H), 7.31 - 7.24 \ (m, 4H), 7.20 - 7.14 \ (m, 3H), 3.26 - 3.20 \ (m, 2H), 2.99 - 2.92 \ (m, 2H). \]
13C NMR (100 MHz, DMSO-d_6) δ 192.9, 141.6, 138.8, 134.7, 128.5, 128.3, 125.8, 125.7, 123.6, 122.9, 122.5, 117.3, 111.2, 42.0, 30.4.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{17}$H$_{14}$ClN$_{2}$O) requires m/z 284.0837, found m/z 284.0844.

(3oa) 1-(4-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

brown powder, 27.3 mg, 52%, m.p. 110-112 °C

1H NMR (400 MHz, CDCl$_3$) δ 8.87 (s, 1H), 7.30 – 7.22 (m, 5H), 7.21 – 7.13 (m, 3H), 7.03 – 7.00 (m, 1H), 3.18 – 3.13 (m, 2H), 3.11 – 3.05 (m, 2H), 2.82 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 194.9, 141.5, 137.3, 133.2, 132.0, 128.5, 128.4, 126.0, 124.4, 124.1, 123.9, 119.7, 109.0, 42.4, 31.2, 23.0.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{18}$H$_{17}$NO) requires m/z 264.1383, found m/z 264.1381.

(3pa) 1-(5-chloro-1H-indol-3-yl)-3-phenylpropan-1-one

brown yellow powder, 26.6 mg, 47%, m.p. 188-189 °C

1H NMR (400 MHz, DMSO-d_6) δ 12.10 (s, 1H), 8.43 (d, J = 2.8 Hz, 1H), 8.19 (d, J = 2.0 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 7.31 – 7.24 (m, 4H), 7.24 – 7.20 (m, 1H), 7.19 – 7.13 (m, 1H), 3.22 – 3.17 (m, 2H), 3.00 – 2.94 (m, 2H).

13C NMR (100 MHz, DMSO-d_6) δ 194.4, 141.6, 135.3, 135.2, 128.4, 128.3, 126.6, 126.5, 125.8, 122.8, 120.5, 115.9, 113.8, 39.0, 30.2.

HRMS (ESI+): exact mass calculated for [M+H]$^+$ (C$_{18}$H$_{15}$ClNO) requires m/z 284.0837, found m/z 284.0835.

(3qa) 1-(5-bromo-1H-indol-3-yl)-3-phenylpropan-1-one

s32
brownish powder, 35.9 mg, 55%, m.p. 182-183 °C

\[^1H\text{ NMR (400 MHz, DMSO-}d_6\text{)} \delta 12.11 (s, 1H), 8.41 (d, J = 2.8 Hz, 1H), 8.36 (d, J = 2.0 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.34 (dd, J = 8.4, 2.0 Hz, 1H), 7.31-7.24 (m, 4H), 7.19-7.13 (m, 1H), 3.19 (t, J = 7.6 Hz, 2H), 2.96 (t, J = 7.6 Hz, 2H). \]

\[^{13}C\text{ NMR (100 MHz, DMSO-}d_6\text{)} \delta 194.4, 141.6, 135.4, 135.1, 128.4, 128.2, 127.2, 125.8, 125.3, 123.5, 115.79, 114.5, 114.2, 38.9, 30.2. \]

HRMS (ESI+): exact mass calculated for [M+H]\(^+\) \((C_{17}H_{14}BrNO)\) requires \(m/z\) 328.0332, found \(m/z\) 328.0344.

(3ra) 1-(5-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

white powder, 20.0 mg, 38%, m.p. 208-210 °C

\[^1H\text{ NMR (400 MHz, DMSO-}d_6\text{)} \delta 11.79 (s, 1H), 8.28 (d, J = 3.1 Hz, 1H), 8.02 (s, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.31-7.24 (m, 4H), 7.19-7.14 (m, 1H), 7.02 (dd, J = 8.4, 2.0 Hz, 1H), 3.20-3.14 (m, 2H), 2.99-2.94 (m, 2H), 2.40 (s, 3H). \]

\[^{13}C\text{ NMR (100 MHz, DMSO-}d_6\text{)} \delta 194.2, 141.7, 135.0, 133.9, 130.4, 128.4, 128.2, 125.8, 125.7, 124.2, 121.2, 115.9, 111.7, 30.4, 21.4. \]

HRMS (ESI+): exact mass calculated for [M+H]\(^+\) \((C_{18}H_{17}NO)\) requires \(m/z\) 264.1383, found \(m/z\) 264.1386.

(3sa) 1-(6-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

dark red oily liquid, 36.8 mg, 70%
\[^{1}\text{H NMR (400 MHz, DMSO-\text{d}_6)} \delta 11.77 (s, 1H), 8.27 (d, J = 3.2 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.32 – 7.23 (m, 5H), 7.19 – 7.13 (m, 1H), 7.02 – 6.99 (m, 1H), 3.20 – 3.14 (m, 2H), 3.00 – 2.93 (m, 2H), 2.40 (s, 3H). \]

\[^{13}\text{C NMR (100 MHz, DMSO-\text{d}_6)} \delta 194.1, 141.8, 137.1, 132.0, 128.4, 128.3, 125.8, 123.3, 121.1, 116.3, 111.8, 38.0, 30.4, 21.3. \]

HRMS (ESI\(^{+}\)): exact mass calculated for [M+H]\(^{+}\) \((\text{C}_{18}\text{H}_{17}\text{NO})\) requires \(m/z\) 264.1383, found \(m/z\) 264.1383.

(3ta) 3-phenyl-1-(2-phenyl-1H-indol-3-yl)propan-1-one

\[\text{celadon crystal, 29.9 mg, 46%, m.p. 187-188 } ^\circ\text{C} \]

\[^{1}\text{H NMR (400 MHz, DMSO-\text{d}_6)} \delta 12.09 (s, 1H), 8.22 – 8.18 (m, 1H), 7.62 – 7.58 (m, 2H), 7.56 – 7.51 (m, 3H), 7.45 – 7.42 (m, 1H), 7.26 – 7.15 (m, 4H), 7.13 – 7.08 (m, 1H), 6.99 – 6.94 (m, 2H), 2.84 – 2.78 (m, 2H), 2.76 – 2.71 (m, 2H). \]

\[^{13}\text{C NMR (100 MHz, DMSO-\text{d}_6)} \delta 195.7, 144.5, 141.4, 135.5, 132.8, 129.9, 129.3, 128.5, 128.2, 128.1, 127.1, 125.7, 122.9, 121.8, 121.6, 113.9, 111.7, 42.7, 30.4. \]

HRMS (ESI\(^{+}\)): exact mass calculated for [M+H]\(^{+}\) \((\text{C}_{23}\text{H}_{19}\text{NO})\) requires \(m/z\) 326.1539, found \(m/z\) 326.1540.

(3ua) 1-(2-methyl-1H-indol-3-yl)-3-phenylpropan-1-one

\[\text{pink crystal, 41.0 mg, 78%, m.p. 141-142 } ^\circ\text{C} \]

\[^{1}\text{H NMR (400 MHz, DMSO-\text{d}_6)} \delta 11.83 (s, 1H), 8.02 – 7.96 (m, 1H), 7.39 – 7.34 (m, 1H), 7.20 – 7.10 (m, 3H), 3.21 (t, J = 7.2 Hz, 2H), 2.98 (t, J = 7.2 Hz, 2H), 2.68 (s, 3H). \]

\[^{13}\text{C NMR (100 MHz, DMSO-\text{d}_6)} \delta 194.5, 144.1, 142.0, 134.8, 128.4, 126.7, 125.7, 121.7, 121.3, 120.6, 113.1, 111.2, 43.4, 29.7, 15.3. \]

HRMS (ESI\(^{+}\)): exact mass calculated for [M+H]\(^{+}\) \((\text{C}_{18}\text{H}_{17}\text{NO})\) requires \(m/z\) 264.1383, found \(m/z\) 264.1387.

(5aa) 1-(4-(dimethylamino)phenyl)-3-phenylpropan-1-one
transparent crystal, 7.59 mg, 15%, m.p. 76-78 °C

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.91 – 7.85 (m, 2H), 7.32 – 7.23 (m, 4H), 7.22 – 7.16 (m, 1H), 6.66 – 6.61 (m, 2H), 3.22 – 3.17 (m, 2H), 3.04 (s, 8H).

\(^{13}\)C NMR (100 MHz, Chloroform-\(d\)) \(\delta\) 197.3, 153.3, 141.8, 130.2, 128.4, 125.9, 124.9, 110.6, 39.9, 39.7, 30.7.

HRMS (ESI\(^+\)): exact mass calculated for \([M+H]^+\) \((C_{17}H_{19}NO)\) requires \(m/z\) 254.1539, found \(m/z\) 254.1538.

(7aa) 3-phenyl-1-(1H-pyrrol-2-yl)propan-1-one

light yellow solid, 22 mg, 55%, m.p 54-56 °C

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 9.77 (s, 1H), 7.32 – 7.22 (m, 4H), 7.22 – 7.17 (m, 1H), 6.92 – 6.89 (m, 1H), 6.28 – 6.23 (m, 1H), 3.15 – 3.01 (m, 4H).

\(^{13}\)C NMR (100 MHz, Chloroform-\(d\)) \(\delta\) 189.7, 141.2, 131.7, 128.4, 126.1, 124.7, 116.2, 110.5, 39.57, 30.7.

HRMS (ESI\(^+\)): exact mass calculated for \([M+H]^+\) \((C_{13}H_{13}NO)\) requires \(m/z\) 200.1070, found \(m/z\) 200.1070.

(9aa) 3-phenyl-1-(3,4,5-trimethoxyphenyl)propan-1-one

clear liquid, 16.2 mg, 27%

\(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.48 (d, \(J = 8.8\) Hz, 1H), 7.32 – 7.22 (m, 4H), 7.22 – 7.16 (m, 1H), 6.71 (d, \(J = 8.9\) Hz, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 3.32 – 3.25 (m, 2H), 3.06 – 2.99 (m, 2H).

\(^{13}\)C NMR (100 MHz, Chloroform-\(d\)) \(\delta\) 199.9, 157.2, 153.9, 142.0, 141.6, 128.4, 125.9, 125.5, 107.1, 61.4, 60.8, 56.1, 44.6, 30.5.

HRMS (ESI\(^+\)): exact mass calculated for \([M+H]^+\) \((C_{18}H_{20}O)\) requires \(m/z\) 301.1434, found \(m/z\) 301.1433.

(11aa) 1-(3,4-dimethoxyphenyl)-3-phenylpropan-1-one
light yellow liquid, 6.48 mg, 12%

H NMR (400 MHz, Chloroform-d) δ 7.58 (dd, J = 8.4, 2.0 Hz, 1H), 7.53 (d, J = 1.9 Hz, 1H), 7.33 – 7.24 (m, 5H), 7.24 – 7.18 (m, 1H), 6.87 (d, J = 8.4 Hz, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.29 – 3.24 (m, 2H), 3.09 – 3.04 (m, 2H).

13C NMR (100 MHz, Chloroform-d) δ 197.8, 153.2, 149.0, 141.4, 130.1, 128.5, 126.1, 122.6, 110.1, 109.9, 56.0, 40.0, 30.4.

HRMS (ESI+): exact mass calculated for [M+H]+ (C17H18O3) requires m/z 271.1329, found m/z 271.1331.
Separate characterization of 3aa of table 4

2A → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.42 – 8.37 (m, 1H), 7.55 (s, 1H), 7.30 – 7.23 (m, 7H), 7.20 – 7.15 (m, 1H), 3.71 (s, 3H), 3.15 – 3.05 (m, 4H).

2B → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.41 – 8.37 (m, 1H), 7.56 (s, 1H), 7.31 – 7.23 (m, 7H), 7.21 – 7.15 (m, 1H), 3.72 (s, 3H), 3.15 – 3.05 (m, 4H).

2C → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.41 – 8.36 (m, 1H), 7.55 (s, 1H), 7.31 – 7.23 (m, 7H), 7.22 – 7.15 (m, 1H), 3.71 (s, 3H), 3.15 – 3.04 (m, 4H).

2D → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.41 – 8.36 (m, 1H), 7.56 (s, 1H), 7.31 – 7.22 (m, 7H), 7.20 – 7.15 (m, 1H), 3.72 (s, 3H), 3.15 – 3.05 (m, 4H).

2E → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.41 – 8.36 (m, 1H), 7.55 (s, 1H), 7.30 – 7.23 (m, 7H), 7.21 – 7.16 (m, 1H), 3.70 (s, 3H), 3.15 – 3.05 (m, 4H).

2F → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.42 – 8.37 (m, 1H), 7.65 (s, 1H), 7.34 – 7.25 (m, 7H), 7.22 – 7.16 (m, 1H), 3.80 (s, 3H), 3.23 – 3.08 (m, 4H).

2G → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.41 – 8.36 (m, 1H), 7.54 (s, 1H), 7.30 – 7.23 (m, 7H), 7.20 – 7.15 (m, 1H), 3.70 (s, 3H), 3.15 – 3.05 (m, 4H).

2H → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.42 – 8.37 (m, 1H), 7.64 (s, 1H), 7.33 – 7.25 (m, 7H), 7.22 – 7.16 (m, 1H), 3.79 (s, 3H), 3.19 – 3.07 (m, 4H).

2I → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.42 – 8.37 (m, 1H), 7.64 (s, 1H), 7.34 – 7.25 (m, 7H), 7.22 – 7.17 (m, 1H), 3.80 (s, 3H), 3.19 – 3.07 (m, 4H).

2J → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.42 – 8.37 (m, 1H), 7.62 (s, 1H), 7.33 – 7.25 (m, 7H), 7.22 – 7.16 (m, 1H), 3.78 (s, 3H), 3.18 – 3.07 (m, 4H).

2K → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.41 – 8.37 (m, 1H), 7.61 (s, 1H), 7.32 – 7.24 (m, 7H), 7.21 – 7.16 (m, 1H), 3.77 (s, 3H), 3.18 – 3.07 (m, 4H).

2L → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.42 – 8.37 (m, 1H), 7.57 (s, 1H), 7.31 – 7.23 (m, 7H), 7.20 – 7.15 (m, 1H), 3.73 (s, 3H), 3.16 – 3.05 (m, 4H).

2M → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.41 – 8.37 (m, 1H), 7.57 (s, 1H), 7.31 – 7.23 (m, 7H), 7.20 – 7.15 (m, 1H), 3.74 (s, 3H), 3.16 – 3.05 (m, 4H).

2N → 3aa

1H NMR (400 MHz, Chloroform-d) δ 8.42 – 8.37 (m, 1H), 7.63 (s, 1H), 7.34 – 7.26 (m, 7H), 7.22 – 7.17 (m, 1H), 3.79 (s, 3H), 3.20 – 3.08 (m, 4H).
Recycling experiment characterization

2k-recycled

1H NMR (400 MHz, Chloroform-d) δ 7.34 – 7.26 (m, 4H), 7.25 – 7.21 (m, 1H), 3.65 (s, 2H), 3.49 (t, J = 6.8 Hz, 2H), 3.41 (t, J = 6.8 Hz, 2H), 1.95 – 1.87 (m, 2H), 1.87 – 1.79 (m, 2H).
Copies of NMR Spectra

3aa

3aa
Separate copies of 1H NMR spectra of 3aa of table 4
References