Supporting Information

One-pot synthesis of monodisperse dual-functionalized polyethylene glycols through macrocyclic sulfates

Xiaoyan Lv,a Xing Zheng,b Zhigang Yang,a Zhong-Xing Jiang*a,†

†Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
‡Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China

Table of contents

1. Optimization of oxidation conditions of macrocyclic sulfites 3a…………………………S2
2. Copies of 1H NMR spectra of compounds 3a-3e……………………………………..S2-S4
3. Copies of 1H, 13C, 19F NMR and HRMS spectra of compounds 4a-4h……..S5-S14
4. Copies of 1H, 13C, 19F NMR and HRMS spectra of compounds 5a-5h……..S14-S25
5. Copies of 1H, 13C, 19F NMR and HRMS spectra of compounds 6a-6j……..S26-S41
6. Copies of 1H, 13C, 19F NMR and HRMS spectra of compounds 7a-7j……..S41-S57
7. Copies of 1H, 13C, 19F NMR and HRMS spectra of compounds 8a-8b……..S58-S60
Table S1 Optimization of reaction conditions

![Chemical structure of compounds 2a and 3a]

<table>
<thead>
<tr>
<th>Entry</th>
<th>NaClO (equiv.)</th>
<th>RuCl₃·3H₂O (equiv.)</th>
<th>Concentration (mmol/mL)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0</td>
<td>0.001</td>
<td>0.20</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
<td>0.005</td>
<td>0.20</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>0.01</td>
<td>0.20</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>0.005</td>
<td>0.20</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>0.005</td>
<td>0.20</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
<td>0.005</td>
<td>0.20</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>5.0</td>
<td>0.005</td>
<td>0.20</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>6.0</td>
<td>0.005</td>
<td>0.20</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>4.0</td>
<td>0.005</td>
<td>0.11</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>4.0</td>
<td>0.005</td>
<td>0.08</td>
<td>88</td>
</tr>
<tr>
<td>11</td>
<td>4.0</td>
<td>0.005</td>
<td>0.06</td>
<td>82</td>
</tr>
</tbody>
</table>

¹H NMR of compound 3a

![NMR spectrum of compound 3a]
1H NMR of compound 3b

1H NMR of compound 3c
1H NMR of compound 3d

1H NMR of compound 3e

S4
1H NMR of compound 4a

1H NMR of compound 4b
1H NMR of compound 4c

13C NMR of compound 4c
\textbf{19F NMR of compound 4c}

\includegraphics{19F_NMR.png}

\textbf{HRMS of compound 4c}

\includegraphics{HRMS.png}
1H NMR of compound 4d

13C NMR of compound 4d
HRMS of compound 4d

1H NMR of compound 4e
1H NMR of compound 4f

13C NMR of compound 4f
HRMS of compound 4f

1H NMR of compound 4g
13C NMR of compound 4g

HRMS of compound 4g
1H NMR of compound 4h

13C NMR of compound 4h
HRMS of compound 4h

^1^H NMR of compound 5a
1H NMR of compound 5b

13C NMR of compound 5b
HRMS of compound 5b

\[\text{HRMS of compound } 5b \]

\[\text{1H NMR of compound } 5c \]
13C NMR of compound 5c

19F NMR of compound 5c
HRMS of compound 5c

\[\text{HRMS of compound 5c} \]

\[\text{5c} \]

\[\text{F}_3\text{C} \longrightarrow \text{O} \longrightarrow \text{CF}_3 \]

\[\text{446.1395} \]

\[\text{444.1025} \]

\[\text{441.0339} \]

\[\text{441.2615} \]

\[\text{440.1374} \]

\[\text{438.1233} \]

\[\text{435.0473} \]

\[\text{434.0074} \]

\[\text{464.2576} \]

\[\text{460.0351} \]

\[\text{470.1683} \]

\[\text{471.9472} \]

\[\text{471.8906} \]

\[\text{471.7337} \]

\[\text{471.5769} \]

\[\text{470.4148} \]

\[\text{470.9128} \]

\[\text{1H NMR of compound 5d} \]

\[\text{1H NMR of compound 5d} \]

\[\text{5d} \]

\[\text{H NMR (400 MHz, CDCl\textsubscript{3})} \]
13C NMR of compound 5d

HRMS of compound 5d
1H NMR of compound 5e

13C NMR of compound 5e
HRMS of compound 5e

\begin{figure}
\centering
\includegraphics[width=\textwidth]{hrms.png}
\end{figure}

1H NMR of compound 5f

\begin{figure}
\centering
\includegraphics[width=\textwidth]{hnmr.png}
\end{figure}
13C NMR of compound 5f

HRMS of compound 5f
1H NMR of compound 5g

13C NMR of compound 5g
HRMS of compound 5g

1H NMR of compound 5h
13C NMR of compound 5h

HRMS of compound 5h
1H NMR of compound 6a

13C NMR of compound 6a
19F NMR of compound 6a

HRMS of compound 6a
1H NMR of compound 6b

13C NMR of compound 6b
HRMS of compound 6b

1H NMR of compound 6c
\[^{13}\text{C} \text{NMR of compound 6c} \]

\[\text{HRMS of compound 6c} \]
1H NMR of compound 6d

13C NMR of compound 6d
19F NMR of compound 6d

HRMS of compound 6d
1H NMR of compound 6e

13C NMR of compound 6e
HRMS of compound 6e

1H NMR of compound 6f
13C NMR of compound 6f

HRMS of compound 6f
1H NMR of compound 6g

13C NMR of compound 6g
HRMS of compound 6g

\[\text{RT: 12.03 mAU, 1 NL, 3.4760} \]
\[\text{F1000 = c 0.3 Sum F1000 (535/000-3600/000)} \]

\[\text{6g} \]

\[\text{605.3093} \]

\[610.0754, 615.1591 \]

\[\text{1H NMR of compound 6h} \]

\[\text{f1 NMR (400 MHz, CDCl3)} \]
13C NMR of compound 6h

HRMS of compound 6h
1H NMR of compound 6i

13C NMR of compound 6i
HRMS of compound 6i

1H NMR of compound 6j
13C NMR of compound 6j

HRMS of compound 6j
1H NMR of compound 7a

13C NMR of compound 7a
$^{19}\text{F} \text{ NMR of compound 7a}$

$\text{HRMS of compound 7a}$
1H NMR of compound 7b

13C NMR of compound 7b
HRMS of compound 7b

1H NMR of compound 7c
13C NMR of compound 7c

HRMS of compound 7c
1H NMR of compound 7d

13C NMR of compound 7d
19F NMR of compound 7d

HRMS of compound 7d
1H NMR of compound 7e

13C NMR of compound 7e
HRMS of compound 7e

\[\text{HRMS of compound 7e} \]

1H NMR of compound 7f

\[\text{1H NMR of compound 7f} \]
13C NMR of compound 7f

[Image of the 13C NMR spectrum of compound 7f]

HRMS of compound 7f

[Image of the HRMS spectrum of compound 7f]
1H NMR of compound 7g

13C NMR of compound 7g
HRMS of compound 7g

1H NMR of compound 7h
13C NMR of compound 7h

HRMS of compound 7h
1H NMR of compound 7i

13C NMR of compound 7i
HRMS of compound 7i

1H NMR of compound 7j
13C NMR of compound 7j

HRMS of compound 7j
1H NMR of compound 8a

13C NMR of compound 8a
HRMS of compound 8a

+ESI Scan (#17) Frag=70.0V 2018101701.1.d Subtract (3)

Counts vs. Mass-to-Charge (m/z)

520 525 530 535 540 545 550 555 560 565 570 575

568.34994

573.30364

H NMR of compound 8b

^H NMR (400 MHz, CDCl3)
13C NMR of compound 8b

HRMS of compound 8b