Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

### Supporting Information

# Metal-free Oxysulfonylation and Aminosulfonylation of alkenyl oximes: Synthesis of Sulfonylated Isoxazolines and Cyclic Nitrones

Zhong-Qi Xu, <sup>a</sup>Lin-Chuang Zheng, <sup>a</sup>Lili Duan<sup>a\*</sup> and Yue-Ming Li <sup>a,b \*</sup>

<sup>a</sup> State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
<sup>b</sup> CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.

#### Contents

| 1. Optimization of reaction conditions                       |  |
|--------------------------------------------------------------|--|
| 2. Expansion Reactions                                       |  |
| 3. X-ray diffraction data for <b>4ra</b>                     |  |
| 4. Copies of <sup>1</sup> H and <sup>13</sup> C NMR Spectra. |  |
| 5. References                                                |  |

### 1. Optimization of reaction conditions



Table S1. Oxysulfonylation of alkenyl oximes 1a with 2a under different conditions.<sup>a</sup>

| Entry | Catalyst | Oxidant     | Base               | Solvent | Yield <sup>b</sup> (%) |
|-------|----------|-------------|--------------------|---------|------------------------|
| 1     | TBAI     | ТВНР        | NaOAc              | DCE     | 24                     |
| 2     | TBAI     | $K_2S_2O_8$ | NaOAc              | DCE     | trace                  |
| 3     | TBAI     | DTBP        | NaOAc              | DCE     | trace                  |
| 4     | TBAI     | BPO         | NaOAc              | DCE     | trace                  |
| 5     | TBAI     | ТВНР        | $Na_2CO_3$         | DCE     | trace                  |
| 6     | TBAI     | ТВНР        | $K_2CO_3$          | DCE     | N.R.                   |
| 7     | TBAI     | ТВНР        | КОН                | DCE     | trace                  |
| 8     | TBAI     | ТВНР        | NaOMe              | DCE     | 21                     |
| 9     | TBAI     | ТВНР        | DBU                | DCE     | trace                  |
| 10    | TBAI     | ТВНР        | KF                 | DCE     | 24                     |
| 11    | TBAI     | ТВНР        | NaHCO <sub>3</sub> | DCE     | 30                     |
| 12    | TBAI     | ТВНР        | NaHCO <sub>3</sub> | MeCN    | 20                     |
| 13    | TBAI     | ТВНР        | NaHCO <sub>3</sub> | THF     | 28                     |
| 14    | TBAI     | ТВНР        | NaHCO <sub>3</sub> | DMSO    | N.R.                   |
| 15    | TBAI     | ТВНР        | NaHCO <sub>3</sub> | DMF     | N.R.                   |
| 16    | TBAI     | ТВНР        | NaHCO <sub>3</sub> | toluene | 31                     |
| 17    | TBAI     | ТВНР        | NaHCO <sub>3</sub> | acetone | trace                  |
| 18    | TBAI     | TBHP        | NaHCO <sub>3</sub> | Diox    | 36                     |
| 19    | NaI      | TBHP        | NaHCO <sub>3</sub> | Diox    | 74                     |
| 20    | TEAI     | TBHP        | NaHCO <sub>3</sub> | Diox    | trace                  |
| 21    | $MnI_2$  | TBHP        | NaHCO <sub>3</sub> | Diox    | 83                     |

| 22              | FeI <sub>2</sub> | ТВНР         | NaHCO <sub>3</sub> | Diox    | 47    |
|-----------------|------------------|--------------|--------------------|---------|-------|
| 23              | $ZnI_2$          | TBHP         | NaHCO <sub>3</sub> | Diox    | trace |
| 24              | NIS              | ТВНР         | NaHCO <sub>3</sub> | Diox    | 87    |
| 25              | $I_2$            | ТВНР         | NaHCO <sub>3</sub> | Diox    | 91    |
| 26              | I <sub>2</sub>   | ТВНР         | none               | Diox    | 44    |
| 27              | none             | ТВНР         | NaHCO <sub>3</sub> | Diox    | N.R.  |
| 28 <sup>c</sup> | $I_2$            | ТВНР         | NaHCO <sub>3</sub> | Diox    | 86    |
| 29 <sup>d</sup> | $I_2$            | ТВНР         | NaHCO <sub>3</sub> | Diox    | 77.   |
| 30 <sup>e</sup> | $I_2$            | TBHP         | NaHCO <sub>3</sub> | Diox    | 82    |
| $31^{\rm f}$    | $I_2$            | TBHP         | NaHCO <sub>3</sub> | Diox    | 79    |
| 32 <sup>g</sup> | $I_2$            | ТВНР         | NaHCO <sub>3</sub> | Diox    | trace |
| 33              | KI               | ТВНР         | NaHCO <sub>3</sub> | Diox    | 80    |
| 34              | KI               | $PhI(OAc)_2$ | NaHCO <sub>3</sub> | Diox    | N.R   |
| 35              | $I_2$            | ТВНР         | $Na_2CO_3$         | Diox    | 20    |
| 36              | $I_2$            | ТВНР         | $K_2CO_3$          | Diox    | trace |
| 37              | $I_2$            | TBHP         | NaOAc              | Diox    | 49    |
| 38              | $I_2$            | TBHP         | KF                 | Diox    | 45    |
| 39              | $I_2$            | ТВНР         | DBU                | Diox    | trace |
| 40              | $I_2$            | ТВНР         | NaHCO <sub>3</sub> | DCE     | 75    |
| 41              | $I_2$            | ТВНР         | NaHCO <sub>3</sub> | MeCN    | 81    |
| 42              | $I_2$            | ТВНР         | NaHCO <sub>3</sub> | THF     | 83    |
| 43              | $I_2$            | ТВНР         | NaHCO <sub>3</sub> | toluene | 61    |
| 44              | $I_2$            | TBHP         | NaHCO <sub>3</sub> | EtOH    | 55    |

<sup>*a*</sup>Reaction conditions: **1a** (0.25 mmol), **2a** (0.5 mmol, 2.0 equiv), oxidant (0.75 mmol, 3.0 equiv), catalyst (0.3 equiv), base (1.5 equiv), solvent (2.0 mL), under argon and stirred at room temperature for 24 h. TBHP= tert-butylhydroperoxide (70% solution in water); TEAB= Tetraethylammonium bromide. BPO= Benzoyl peroxide <sup>*b*</sup> Isolated yield based on **1a**. <sup>*c*</sup> Reaction was proceeded under 70°C. <sup>*d*</sup>2.0 equiv. of TBHP was used. <sup>e</sup>1.8 equiv. of **2a** 

was used. <sup>f</sup>0.2 equiv. of I<sub>2</sub> was used. <sup>g</sup>Reaction system was open to air.

#### 2. Expansion Reactions

(1) Gram scale experiment to synthesis compound **3aa**.



A 100 mL flask equipped with a magnetic stir bar was charged with  $\beta$ , $\gamma$ -unsaturated ketoxime **1a** (6.25 mmol, 1.0 g) and *p*-Toluenesulfonyl hydrazide **2a** (12.5 mmol, 2.33 g). Then, I<sub>2</sub> (0.24 g), NaHCO<sub>3</sub> (0.8 g), and TBHP (2.4 g, 70% solution in water), 1,4-dioxane (50 ml) were added to this system. Hereafter, the reaction tube was vacuumed and charged with argon and stirred at room temperature for 24 h. Then, the reaction mixture was filtered and evaporated to obtain crude product. The residue was purified by column chromatography (ethyl acetate: petroleum ether= 1: 10, v/v) to afford the desired product **3aa** 1.38g (70% yield) as a white solid.

(2) The [3+2] cycloaddition of cyclic nitrone **4ra** with methyl propiolate.<sup>1</sup>



The compound **3ra** (89.4 mg, 0.25 mmol) was mixed with methyl propiolate (105mg, 1.25 mmol) using benzene as solvent in a 50 mL flask. The mixture was heated for 24 h at 80°C. After removal of solvent, the residue was purified by silica gel chromatography (ethyl acetate: petroleum ether= 1: 15, v/v) to give 83 mg of product **5** (75%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta$  7.76 (d, J = 7.6 Hz, 2H), 7.61 (d, J = 7.7 Hz, 2H), 7.36 – 7.27 (m, 3H), 7.23 – 7.15 (m, 2H), 7.15 – 7.09 (m, 1H), 3.83 – 3.63 (m, 5H), 3.31 (dd, J = 13.4, 9.9 Hz, 1H), 2.39 (s, 3H), 1.95 (dd, J = 12.9, 5.0 Hz, 1H), 1.64 – 1.49 (m, 1H), 1.25 (s, 3H), 0.71 (s, 3H).<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 155.5, 145.0, 143.9, 136.9, 130.0, 127.9, 127.8, 126.9, 126.8, 111.9, 83.0, 61.4, 60.0, 51.6, 45.4, 44.1, 27.7, 27.2, 21.7. HRMS-ESI

(m/z):  $[M+H]^+$  calcd for:  $C_{24}H_{28}NO_5S^+$ , 442.1683; found: 442.1688. IR (KBr): v = 2962.9, 1711.2, 1613.5, 1439.9, 1315.5, 1149.9, 768.1, 671.7, 510.9 cm<sup>-1</sup>.

### 3. X-ray diffraction data for 4ra.

The crystals of **3ai** was obtained by crystallization from a solution in acetone/petroleum ether after purification by column chromatography.



Chemical Formula: C<sub>20</sub>H<sub>23</sub>NO<sub>3</sub>S





Table S2. Crystal data and structure refinement for 4ra.

| Identification code | 4ra                   |
|---------------------|-----------------------|
| Empirical formula   | $C_{20}H_{23}NO_{3}S$ |
| Formula weight      | 357.45                |
| Temperature/K       | 113                   |
| Crystal system      | orthorhombic          |
| Space group         | Pbca                  |

| a/Å                                         | 10.1298(3)                                        |
|---------------------------------------------|---------------------------------------------------|
| b/Å                                         | 18.7025(5)                                        |
| c/Å                                         | 19.0521(5)                                        |
| a/°                                         | 90                                                |
| β/°                                         | 90                                                |
| $\gamma/^{\circ}$                           | 90                                                |
| Volume/Å <sup>3</sup>                       | 3609.47(17)                                       |
| Z                                           | 8                                                 |
| $\rho_{calc}g/cm^3$                         | 1.316                                             |
| μ/mm <sup>-1</sup>                          | 0.198                                             |
| F (000)                                     | 1520                                              |
| Crystal size/mm <sup>3</sup>                | 0.32×0.24×0.22                                    |
| Radiation                                   | MoK\a ( $\lambda = 0.71073$ )                     |
| 2 $\Theta$ range for data collection/°      | 2.1630 to 33.0000                                 |
| Index ranges                                | -13 ≤ h ≤ 13, -24≤ k ≤ 24, -25 ≤ l ≤ 25           |
| Reflections collected                       | 55619                                             |
| Independent reflections                     | $4310 [R_{(int)} = 0.0558, R_{(sigma)} = 0.0271]$ |
| Data/restraints/parameters                  | 4310 /0/230                                       |
| Goodness-of-fit on F <sup>2</sup>           | 1.039                                             |
| Final R indexes $[I \ge 2\sigma(I)]$        | R1 = 0.0400, wR2 = 0.0977                         |
| Final R indexes [all data]                  | R1 = 0.0483, wR2 = 0.1037                         |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.35 / -0.40                                      |
| Flack parameter                             | n/a                                               |

**Table S3.** Fractional Atomic Coordinates ( $\times 10^4$ ) and Equivalent Isotropic DisplacementParameters (Å<sup>2</sup> $\times 10^3$ ) for **4ra**. Useq is defined as 1/3 of the trace of the orthogonalized.

| Atom | X         | у         | Z         | Ueq       |
|------|-----------|-----------|-----------|-----------|
| S1   | 5056.3(3) | 3001.3(2) | 8499.9(2) | 20.25(11) |

\_\_\_\_

| 01  | 2201.3(10) | 4474.3(5)  | 7428.9(5)  | 23.6(2) |
|-----|------------|------------|------------|---------|
| O2  | 5242.6(11) | 3224.9(6)  | 9217.1(6)  | 29.5(3) |
| O3  | 6189.2(10) | 2753.8(6)  | 8111.2(6)  | 27.1(3) |
| N1  | 3101.0(12) | 4182.2(6)  | 7040.3(6)  | 19.0(3) |
| C1  | 3442.9(14) | 4357.7(8)  | 6405.5(8)  | 21.0(3) |
| C2  | 4514.3(15) | 3879.9(9)  | 6115.1(8)  | 25.2(3) |
| C3  | 4881.7(17) | 3412.2(9)  | 6756.4(8)  | 30.9(4) |
| C4  | 3832.5(14) | 3545.6(7)  | 7318.2(7)  | 20.2(3) |
| C5  | 2851.6(14) | 4989.2(8)  | 6061.0(7)  | 21.3(3) |
| C6  | 3175.8(18) | 5666.9(9)  | 6305.8(9)  | 31.9(4) |
| C7  | 2636.3(19) | 6272.7(9)  | 6006.9(9)  | 34.3(4) |
| C8  | 1766.6(16) | 6209.4(8)  | 5451.8(8)  | 27.0(3) |
| C9  | 1448.8(15) | 5538.1(8)  | 5195.8(8)  | 25.4(3) |
| C10 | 1984.0(15) | 4927.0(8)  | 5499.0(8)  | 23.9(3) |
| C11 | 5699.7(18) | 4327.2(11) | 5883.3(11) | 42.8(5) |
| C12 | 3995(2)    | 3432.3(11) | 5503.6(10) | 44.9(5) |
| C13 | 4346.6(14) | 3734.2(7)  | 8044.7(7)  | 20.3(3) |
| C14 | 3860.6(14) | 2317.9(7)  | 8475.6(7)  | 20.0(3) |
| C15 | 4015.4(16) | 1757.6(8)  | 8004.4(8)  | 25.3(3) |
| C16 | 3085.8(16) | 1213.2(8)  | 7990.6(8)  | 26.4(3) |
| C17 | 1998.1(15) | 1225.9(8)  | 8436.3(8)  | 23.3(3) |
| C18 | 1862.4(16) | 1795.4(8)  | 8902.8(8)  | 25.1(3) |
| C19 | 2787.0(15) | 2340.9(8)  | 8927.2(8)  | 23.6(3) |
| C20 | 1001.7(18) | 6314(9)    | 8417.1(9)  | 32.4(4) |

**Table S4**. Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **4ra**. The anisotropicdisplacement factor exponent takes the form:  $-2\pi^2 [h^2 a^{*2} U_{11} + 2hka^* b^* U_{12} + ...]$ .

| Atom | U11 | U22 | U33 | U23 | U13 | U12 |
|------|-----|-----|-----|-----|-----|-----|
|      |     |     |     |     |     |     |

| S1  | 18.38(19) | 19.44(19) | 22.9(2)  | 1.96(13) | -1.39(13) | 0.06(13) |
|-----|-----------|-----------|----------|----------|-----------|----------|
| 01  | 18.1(5)   | 26.0(5)   | 26.7(5)  | -1.3(4)  | 4.7(4)    | 4.0(4)   |
| O2  | 31.1(6)   | 31.6(6)   | 25.7(6)  | -0.3(5)  | -7.0(5)   | -3.6(5)  |
| O3  | 18.4(5)   | 25.3(5)   | 37.6(6)  | 5.1(5)   | 5.0(5)    | 2.1(4)   |
| N1  | 15.7(6)   | 18.8(6)   | 22.4(6)  | -0.6(5)  | -0.5(5)   | 0.4(5)   |
| C1  | 19.1(7)   | 22.3(7)   | 21.6(7)  | -0.4(5)  | -2.1(6)   | -0.7(6)  |
| C2  | 23.1(7)   | 32.1(8)   | 20.5(7)  | -0.6(6)  | 0.3(6)    | 5.6(6)   |
| C3  | 33.4(9)   | 34.9(9)   | 24.2(8)  | 1.5(7)   | 4.9(7)    | 13.8(7)  |
| C4  | 20.0(7)   | 18.8(6)   | 21.7(7)  | 0.8(5)   | -1.2(6)   | 1.1(5)   |
| C5  | 20.2(7)   | 24.0(7)   | 19.8(7)  | 1.5(5)   | 0.7(6)    | -0.8(6)  |
| C6  | 35.7(9)   | 28.0(8)   | 32.1(8)  | -1.4(7)  | -12.0(7)  | -3.1(7)  |
| C7  | 41.8(10)  | 22.8(8)   | 38.1(9)  | -0.3(7)  | -6.9(8)   | -4.2(7)  |
| C8  | 27.0(8)   | 26.0(7)   | 27.9(8)  | 7.5(6)   | 3.4(6)    | 1.1(6)   |
| С9  | 21.3(7)   | 30.9(8)   | 23.9(7)  | 3.0(6)   | -2.0(6)   | 0.4(6)   |
| C10 | 22.0(7)   | 24.3(7)   | 25.3(7)  | -0.1(6)  | -2.1(6)   | -2.0(6)  |
| C11 | 28.1(9)   | 53.5(12)  | 46.8(11) | 13.0(9)  | 10.4(8)   | 5.7(8)   |
| C12 | 45.0(11)  | 53.4(12)  | 36.3(10) | -20.5(9) | -11.2(9)  | 19.5(9)  |
| C13 | 19.9(7)   | 17.6(6)   | 23.5(7)  | 0.9(5)   | -1.8(6)   | 0.5(5)   |
| C14 | 20.1(7)   | 18.9(7)   | 21.1(7)  | 2.5(5)   | -0.4(6)   | 0.9(5)   |
| C15 | 25.1(8)   | 24.9(7)   | 26.0(7)  | -1.6(6)  | 7.5(6)    | 0.3(6)   |
| C16 | 30.2(8)   | 20.0(7)   | 29.1(8)  | -3.6(6)  | 5.5(6)    | -1.3(6)  |
| C17 | 22.8(8)   | 20.9(7)   | 26.0(7)  | 4.2(6)   | 0.5(6)    | -0.5(6)  |
| C18 | 22.7(8)   | 26.0(7)   | 26.7(8)  | 1.0(6)   | 6.2(6)    | 0.2(6)   |
| C19 | 25.5(8)   | 23.1(7)   | 22.2(7)  | -1.3(6)  | 2.7(6)    | 2.0(6)   |
| C20 | 33.5(9)   | 24.8(8)   | 39.0(9)  | -0.2(7)  | 8.5(7)    | -6.9(7)  |
|     |           |           |          |          |           |          |

Table S5. Bond lengths for 4ra.

| Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|
|      |      |          |      |      |          |

| S1 | O2  | 1.4414(11) | C4  | C13 | 1.5203(19) |
|----|-----|------------|-----|-----|------------|
| S1 | O3  | 1.4421(11) | C5  | C6  | 1.390(2)   |
| S1 | C13 | 1.7743(14) | C5  | C10 | 1.390(2)   |
| S1 | C14 | 1.7614(15) | C6  | C7  | 1.381(2)   |
| 01 | N1  | 1.2950(15) | C7  | C8  | 1.381(2)   |
| N1 | C1  | 1.3002(19) | C8  | С9  | 1.385(2)   |
| N1 | C4  | 1.4989(18) | С9  | C10 | 1.391(2)   |
| C1 | C2  | 1.511(2)   | C14 | C15 | 1.389(2)   |
| C1 | C5  | 1.478(2)   | C14 | C19 | 1.387(2)   |
| C2 | C3  | 1.548(2)   | C16 | C17 | 1.391(2)   |
| C2 | C11 | 1.529(2)   | C17 | C18 | 1.394(2)   |
| C2 | C12 | 1.528(2)   | C17 | C20 | 1.502(2)   |
| C3 | C4  | 1.529(2)   | C18 | C19 | 1.386(2)   |

Table S6. Bond angles for 4ra.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| O2   | S1   | O3   | 120.07(8)  | C13  | C4   | C3   | 115.92(13) |
| O2   | S1   | C13  | 107.00(7)  | C6   | C5   | C1   | 118.95(13) |
| O2   | S1   | C14  | 108.99(7)  | C6   | C5   | C10  | 118.95(14) |
| 03   | S1   | C13  | 108.62(7)  | C10  | C5   | C1   | 122.10(13) |
| 03   | S1   | C14  | 107.51(7)  | C7   | C6   | C5   | 121.08(15) |
| C14  | S1   | C13  | 105.61(7)  | C6   | C7   | C8   | 119.86(15) |
| 01   | N1   | C1   | 127.79(12) | C7   | C8   | C9   | 119.70(15) |
| 01   | N1   | C4   | 118.75(11) | C8   | C9   | C10  | 120.54(14) |
| C1   | N1   | C4   | 113.41(12) | C5   | C10  | C9   | 119.85(14) |
| N1   | C1   | C2   | 112.50(13) | C4   | C13  | S1   | 113.87(10) |
| N1   | C1   | C5   | 120.46(13) | C15  | C14  | S1   | 119.14(11) |
| C5   | C1   | C2   | 126.95(13) | C19  | C14  | S1   | 120.02(11) |
| C1   | C2   | C3   | 102.58(12) | C19  | C14  | C15  | 120.84(14) |
| C1   | C2   | C11  | 110.27(14) | C16  | C15  | C14  | 119.31(14) |

| C1  | C2 | C12 | 110.86(13) | C15 | C16 | C17 | 120.90(14) |
|-----|----|-----|------------|-----|-----|-----|------------|
| C11 | C2 | C3  | 110.39(14) | C16 | C17 | C18 | 118.70(14) |
| C12 | C2 | C3  | 112.02(15) | C16 | C17 | C20 | 120.30(14) |
| C12 | C2 | C11 | 110.48(15) | C18 | C17 | C20 | 120.99(14) |
| C4  | C3 | C2  | 107.05(12) | C19 | C18 | C17 | 121.15(14) |
| N1  | C4 | C3  | 103.06(11) | C18 | C19 | C14 | 119.09(14) |
| N1  | C4 | C13 | 107.85(11) |     |     |     |            |

**Table S7.** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters

 ( $Å^2 \times 10^3$ ) for **4ra**.

| Atom | X        | у        | Z        | Ueq   |
|------|----------|----------|----------|-------|
| H3A  | 0.489554 | 0.290064 | 0.662312 | 0.037 |
| H3B  | 0.576591 | 0.354521 | 0.693515 | 0.037 |
| H4   | 0.322472 | 0.312541 | 0.734864 | 0.024 |
| H6   | 0.377851 | 0.571411 | 0.668504 | 0.038 |
| H7   | 0.286264 | 0.673196 | 0.618253 | 0.041 |
| H8   | 0.138816 | 0.662457 | 0.524670 | 0.032 |
| H9   | 0.086039 | 0.549469 | 0.480985 | 0.030 |
| H10  | 0.175722 | 0.446814 | 0.532250 | 0.029 |
| H11A | 0.544039 | 0.463792 | 0.549269 | 0.064 |
| H11B | 0.641398 | 0.400946 | 0.573145 | 0.064 |
| H11C | 0.600469 | 0.462109 | 0.627708 | 0.064 |
| H12A | 0.322754 | 0.315516 | 0.565843 | 0.067 |
| H12B | 0.468866 | 0.310570 | 0.534270 | 0.067 |
| H12C | 0.373663 | 0.374886 | 0.511747 | 0.067 |
| H13A | 0.360888 | 0.392766 | 0.832765 | 0.024 |
| H13B | 0.501821 | 0.411589 | 0.799860 | 0.024 |
| H15  | 0.475022 | 0.174721 | 0.769477 | 0.030 |

| H16  | 0.319330 | 0.082636 | 0.767254 | 0.032 |
|------|----------|----------|----------|-------|
| H18  | 0.112307 | 0.180988 | 0.920922 | 0.030 |
| H19  | 0.268720 | 0.272530 | 0.924878 | 0.028 |
| H20A | 0.116764 | 0.032760 | 0.800738 | 0.049 |
| H20B | 0.011157 | 0.083417 | 0.838553 | 0.049 |
| H20C | 0.107572 | 0.034461 | 0.884576 | 0.049 |
|      |          |          |          |       |

## 4. Copies of <sup>1</sup>H and <sup>13</sup>C NMR Spectra.





















































. 180 f1 (ppm) 

#### 









S34







10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 fl (ppm)













S40





















![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

### 5. References

1. Hyun-Suk, Y.; Eunsu, S.; Seunghoon, S. *Chem. Eur. J.* **2011**, *17*, 1764.