Enantioselective Synthesis of Chiral Heterocyclic Biaryls via Asymmetric Suzuki–Miyaura Cross-coupling of 3bromopyridine-4-carboxamides

Wang Xia,^a Zhenwei Zhang,^b Yongsu Li,^a Xiaoding Jiang,^a Hao Liang,^a

Yaqi Zhang,^a Rihui Cao^a and Liqin Qiu^{a*}

^{a.} School of Chemistry, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Engineering Research Center of Chiral Drugs, Sun Yat-Sen University, No. 135 Xingangxi Road, Guangzhou 510275, People's Republic of China. E-mail: <u>qiuliqin@mail.sysu.edu.cn</u> ^{b.} College of Pharmacy, Guangxi Zhuang-Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, People's Republic of China.

Supporting information

Table of Contents

General Considerations:	2
Experimental Section	3
(1) General Procedure for the Synthesis of compounds 1a-1d	
(2) General Procedure for the asymmetric Suzuki–Miyaura coupling	4-13
NMR and HPLC Spectra for All Products	14-51

General Considerations

All reactions and manipulations were performed in a nitrogen-filled glovebox or under nitrogen using standard Schlenk techniques unless otherwise noted. Commercially available compounds were used without further purification. Solvents were dried according to standard procedures. Column chromatography was carried out using silica gel (200–300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer (400 and 100 MHz respectively). Chemical shifts (δ) were referenced to tetramethylsilane as an internal standard (¹H NMR, ¹³C NMR). High-resolution mass spectra were obtained with Shimazu LCMS-IT-TOF mass spectrometer. Optical rotations were measured on Perkin-Elmer 341 polarimeter. Enantiomeric excesses (ee values) of the products were determined by chiral HPLC analysis using an Aglient HP 1200 instrument (*n*-hexane/2-propanol as eluent) with a Chialcel AD-H or OD-H.

Experimental Section

A mixture of 3-bromoisonicotinic acid (5.0 mmol) and $SOCl_2$ (8 mL) was heated to reflux for 3 h. The resulting mixture was then cooled down to room temperature and concentrated with the aid of a rotary evaporator. To the obtained residue, toluene (30 mL) was added and the resulting solution was concentrated with the aid of a rotary evaporator. Then the residue was dissolved in DCM (10 mL) and added to a solution containing RNH₂ (1.2 eq), Et₃N (1.5 eq), DMAP (5%) and DCM (10 mL). The mixture was then stirred at room temperature over night. The resulting mixture was diluted with EA (40 mL) and washed twice with water and once with brine. The organic layer was dried and concentrated in vacuo. The crude product was purified by flash chromatography.

3-bromo-N-(2-phenyl-2-propyl)isonicotinamide (1a)

1a

The title compound was obtained in 78% yield as a pale yellow solid from 3bromoisonicotinic acid by adopting the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 8.60 (d, *J* = 4.0 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.29-7.47 (m, 4H), 6.38 (s, 1H), 1.87 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.01, 152.63, 148.66, 145.93, 144.82, 128.55, 127.08, 124.83, 123.45, 117.07, 57.29, 28.80.

3-bromo-N-(tert-butyl)isonicotinamide (1b)

The title compound was obtained in 82% yield as a white solid from 3bromoisonicotinic acid by adopting the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.56 (d, *J* = 4.0 Hz, 1H), 7.40 (d, *J* = 4.0 Hz, 1H), 5.92 (s, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 164.49, 152.47, 148.52, 145.34, 123.08, 117.14, 52.71, 28.66. 3-bromo-N-(2-ethyl-2-propyl)isonicotinamide (1c)

The title compound was obtained in 76% yield as a white solid from 3bromoisonicotinic acid by adopting the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 8.59 (d, *J* = 4.0 Hz, 1H), 7.43 (d, *J* = 4.0 Hz, 1H), 5.73 (s, 1H), 1.84-1.90 (m, 2H), 1.45 (s, 6H), 0.97 (t, *J* = 4.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.45, 152.48, 148.49, 145.39, 123.14, 117.07, 55.56, 32.85, 26.29, 8.47.

3-bromo-N-(cyclohexyl)isonicotinamide (1d)

The title compound was obtained in 96% yield as a white solid from 3bromoisonicotinic acid by adopting the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 8.60 (d, *J* = 4.0 Hz, 1H), 7.47 (d, *J* = 4.0 Hz, 1H), 5.99 (s, 1H), 4.03 (d, *J* = 8.0 Hz, 1H), 2.08 (d, *J* = 12.0 Hz, 2H),1.67-1.80 (m, 3H), 1.41-1.50 (m, 2H), 1.23-1.35 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.31, 152.51, 148.52, 144.77, 123.31, 117.20, 49.15, 32.75, 25.41, 24.70.

(2) General Procedure for the asymmetric Suzuki-Miyaura coupling

An oven-dried one-necked flask (15 mL) was charged with pyridyl bromide 1 (0.5 mmol, 1.0 equiv), $Pd_2(dba)_3$ (0.01 mmol, 4 mol% Pd), ligand L1 (0.024 mmol, 4.8 mol%), 2-alkyl-1-naphthylboronic acid (1 mmol, 2.0 equiv), and K_3PO_4 (1.5 mmol, 3 equiv) in a glovebox, then dry degassed DME (5 mL) was injected into the flask. The racemic products were prepared by using S-phos as the ligand and all the racemic reactions were performed at 110 °C in toluene for 24–48 h. For the asymmetric catalytic reaction, the mixture was stirred vigorously in in DME at 80 °C for 36–96 h. The reaction was monitored by TLC. After the reaction completion, the reaction mixture was diluted with ethyl acetate and water. Followed by extraction twice, the combined organic layers was then dried over anhydrous Na₂SO₄ and then concentrated. The crude product was purified by flash chromatography on silica gel. The enantiomeric excesses (ee values) of the products were determined by HPLC with a chiral AD-H or OD-H column.

3-(2-methyl-1-naphthyl)-N-(2-phenyl-2-propyl)isonicotinamide (3aA)

The reaction was conducted for 36 h at 80 °C according to the general procedure to give the title compound **3aA** (182 mg, 96% yield) as a pale yellow oil in 87% ee. $[\alpha]_D^{25} = +18.9$ (c = 1.8, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 17.5 min (major isomer) and 13.6 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.84 (d, *J* = 8.0 Hz, 1H), 8.56 (s, 1H), 7.88-7.94 (m, 3H), 7.44-7.52 (m, 3H), 7.30 (d, *J* = 12.0 Hz, 1H), 7.04-7.17 (m, 3H), 6.68-6.70 (m, 2H), 5.75 (s, 1H), 2.25 (s, 3H), 1.10 (s, 3H), 1.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.08, 151.79, 149.97, 145.61, 143.26, 129.11, 128.82, 128.52, 128.49, 128.13, 128.10, 127.51, 126.52, 126.49, 125.87, 125.84, 124.75, 124.72, 124.34, 123.21, 55.60, 28.03, 27.70, 20.76.

3-(2-ethyl-1-naphthyl)-N-(2-phenyl-2-propyl)isonicotinamide (3aB)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3aB** (152 mg, 77% yield) as a pale yellow oil in 79% ee. $[\alpha]_D^{25} = +17.2$ (c = 1.0, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 14.6 min (major isomer) and 10.7 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.85 (d, *J* = 4.0 Hz, 1H), 8.59 (s, 1H), 7.93-7.97 (m, 3H), 7.44-7.58 (m, 3H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.07-7.14 (m, 3H), 6.66-6.68 (m, 2H), 5.79 (s, 1H), 2.51-2.58 (m, 2H), 1.16 (t, *J* = 8.0 Hz, 3H), 1.08 (s, 3H), 1.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.86, 151.93, 149.98, 145.54, 143.16, 140.98, 132.83, 132.11, 131.36, 130.85, 129.48, 128.47, 128.09, 127.53, 127.32, 126.46, 125.96, 124.99, 124.34, 123.32, 55.53, 28.04, 27.76, 27.05, 15.27. ESI-HRMS Calcd. for C₂₇H₂₆N₂O [M+Na]⁺: 417.1937; found 417.1948.

3-(2-isopropyl -1-naphthyl)-N-(2-phenyl-2-propyl)isonicotinamide (3aC)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3a**C (106 mg, 52% yield) as a pale yellow oil in 92% ee. $[\alpha]_D^{25} = +11.7$ (c = 0.6, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 17.7 min (major isomer) and 8.4 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.85 (d, *J* = 4.0 Hz, 1H), 8.59 (s, 1 H), 7.96-8.02 (m, 3H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.44-7.55 (m, 2H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.03-7.09 (m, 3H), 6.62-6.64 (m, 2H), 5.84 (s, 1H), 2.76-2.83 (m, 1H), 1.20-1.25 (m, 6H), 1.11 (s, 3H), 0.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.79, 151.79, 149.98, 145.49, 145.35, 143.08, 132.77, 132.07, 130.95, 130.50, 129.77, 128.47, 128.12, 127.54, 126.43, 126.04, 125.32, 124.34, 124.20, 123.36, 55.50, 30.91, 28.22, 27.73, 24.40, 23.11. ESI-HRMS Calcd. for C₂₈H₂₈N₂O [M+Na]⁺: 431.2094; found 431.2100.

3-(2,4-methyl -1-naphthyl)-N-(2-phenyl-2-propyl)isonicotinamide (3aD)

The reaction was conducted for 60 h at 80 °C according to the general procedure to give the title compound **3aD** (181 mg, 92% yield) as a pale yellow oil in 80% ee. $[\alpha]_D^{25} = +22.6$ (c = 1.6, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 11.1 min (major isomer) and 9.8 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.84 (d, *J* = 4.0 Hz, 1H), 8.55 (s, 1 H), 8.08 (d, *J* = 8.0 Hz, 1H), 7.95-7.96 (m, 1H), 7.54-7.58 (m, 1H), 7.44-7.48 (m, 1H), 7.34 (s, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.06-7.14 (m, 3H), 6.66-6.69 (m, 2H), 5.82 (s, 1H), 2.76 (s, 3H), 2.20 (s, 3H), 1.09 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.02, 152.08, 149.88, 145.70, 143.12, 135.67, 134.64, 132.88, 131.43, 131.36, 130.28, 129.54, 128.09, 128.04, 127.12, 126.46, 125.68, 125.35, 124.63, 124.28, 123.23, 55.61, 27.86, 27.62, 20.60, 19.43. ESI-HRMS Calcd. for C₂₇H₂₆N₂O [M+Na]⁺: 417.1937; found 417.1936.

3-(2-methyl-1-naphthyl)-N-(tert-butyl)isonicotinamide (3bA)

The reaction was conducted for 60 h at 80 °C according to the general procedure to give the title compound **3bA** (135 mg, 85% yield) as a pale yellow oil in 62% ee. $[\alpha]_D^{25} = +20.7$ (c = 1.0, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 8.7 min (major isomer) and 7.2 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.84 (d, *J* = 4.0 Hz, 1H), 8.56 (s, 1 H), 7.90-7.98 (m, 3H), 7.41-7.50 (m, 3H), 7.26 (d, *J* = 8.0 Hz, 1H), 5.16 (s, 1H), 2.23 (s, 3H), 0.69 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 164.74, 151.69, 149.92, 143.88, 135.02, 132.76, 132.08, 128.93, 128.80, 128.39, 127.44, 125.73, 124.59, 122.59, 50.97, 27.63, 27.59, 20.64. ESI-HRMS Calcd. for C₂₁H₂₂N₂O [M+Na]⁺: 341.1624; found 341.1623.

3-(2-ethyl-1-naphthyl)-N-(tert-butyl)isonicotinamide (3bB)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3bB** (138 mg, 83% yield) as a pale yellow oil in 64% ee. $[\alpha]_D^{25} = +17.9$ (c = 1.5, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 7.6 min (major isomer) and 6.2 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.85 (d, *J* = 4.0 Hz, 1H), 8.58 (s, 1 H), 7.91-7.97 (m, 3H), 7.41-7.56 (m, 3H), 7.24 (d, *J* = 8.0 Hz, 1H), 5.22 (s, 1H), 2.47-2.57 (m, 2H), 1.15 (t, *J* = 8.0 Hz, 3H), 0.67 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 164.50, 151.85, 149.95, 143.82, 140.88, 132.77, 132.00, 131.32, 130.82, 129.25, 128.32, 127.41, 127.30, 125.80, 124.82, 123.04, 50.98, 27.62, 26.94, 15.26. ESI-HRMS Calcd. for C₂₂H₂₄N₂O [M+Na]⁺: 355.1781; found 355.1778.

3-(2-isopropyl-1-naphthyl)-N-(tert-butyl)isonicotinamide (3bC)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3bC** (109 mg, 63% yield) as a colorless oil in 75% ee. $[\alpha]_D^{25} = +20.8$ (c = 0.7, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 7.5 min (major isomer) and 5.5 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.84 (d, *J* = 4.0 Hz, 1H), 8.56 (s, 1 H), 7.89-8.00 (m, 3H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.41-7.50 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 1H), 5.27 (s, 1H), 2.72-2.76 (m, 1H), 1.19-1.22 (m, 6H), 0.65 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 164.40, 151.67, 145.93, 145.24, 143.76, 132.68, 131.93, 130.94, 130.44, 129.52, 128.31, 127.42, 125.87, 125.09, 124.13, 123.08, 50.98, 30.83, 27.65, 24.31, 23.12. ESI-HRMS Calcd. for C₂₃H₂₆N₂O [M+H]⁺: 333.1961; found 333.1959.

3-(2,4-dimethyl-1-naphthyl)-N-(tert-butyl)isonicotinamide (3bD)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3bD** (146 mg, 88% yield) as a colorless oil in 57% ee. $[\alpha]_D^{25} = +14.4$ (c = 0.7, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] OD-H, 254 nm, n-hexane : i-PrOH = 97 : 3 as the eluent, flow rate: 1 mL/min, retention times: 11.5 min (major isomer) and 14.0 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.81 (s, 1H), 8.53 (s, 1 H), 8.06 (d, *J* = 4.0 Hz, 1H), 7.90 (s, 1H), 7.49-7.51 (m, 1H), 7.40-7.43 (m, 1H), 7.23(s, 1H), 7.25-7.27 (m, 1H), 5.23 (s, 1H), 2.75 (s, 3H), 2.17 (s, 3H), 0.67 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 164.67, 151.95, 149.83, 143.81, 135.46, 134.52, 132.81, 131.42, 131.25, 130.22, 129.49, 127.04, 125.55, 125.18, 124.53, 122.96, 50.96, 27.58, 20.55, 19.40. ESI-HRMS Calcd. for C₂₂H₂₄N₂O [M+H]⁺: 333.1961; found 333.1966.

3-(2-methyl-1-naphthyl)-N-(2-ethyl-2-propyl)isonicotinamide (3cA)

The reaction was conducted for 60 h at 80 °C according to the general procedure to give the title compound **3cA** (144 mg, 87% yield) as a colorless oil in 60% ee. $[\alpha]_D^{25} = +21.3$ (c = 1.1, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 8.0 min (major isomer) and 6.7 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.83 (d, *J* = 8.0 Hz, 1H), 8.53 (s, 1 H), 7.90-7.94 (m, 3H), 7.40-7.49 (m, 3H), 7.25 (d, *J* = 8.0 Hz, 1H), 5.15 (s, 1H), 2,22 (s, 3H), 1,08-1.15 (m, 2H), 0.66 (s, 3H), 0.65 (s, 3H), 0.27 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.48, 151.73, 149.89, 143.70, 134.97, 132.73, 132.11, 131.13, 128.90, 128.77, 128.33, 127.35, 125.67, 124.59, 123.01, 53.95, 32.46, 25.22, 25.11, 20.64, 7.56. ESI-HRMS Calcd. for C₂₂H₂₄N₂O [M+H]⁺: 333.1961; found 333.1966.

3-(2-ethyl-1-naphthyl)-N-(2-ethyl-2-propyl)isonicotinamide (3cB)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3cB** (163 mg, 94% yield) as a pale yellow oil in 59% ee. $[\alpha]_D^{25} = +19.8$ (c = 1.7, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 7.3 min (major isomer) and 6.1 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.85 (d, *J* = 4.0 Hz, 1H), 8.56 (s, 1 H), 7.91-7.97 (m, 3H), 7.42-7.55 (m, 3H), 7.23 (d, *J* = 8.0 Hz, 1H), 5.19 (s, 1H), 2,44-2.57 (m, 2H), 1.15 (t, *J* = 8.0 Hz, 3H), 1,05-1.21 (m, 2H), 0.66 (s, 3H), 0.62 (s, 3H), 0.27 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.36, 151.94, 149.95, 143.69, 140.93, 132.80, 132.10, 131.39, 130.81, 129.31, 128.35, 127.41, 127.32, 125.83, 124.89, 123.15, 54.03, 32.38, 27.02, 25.26, 25.15, 15.21, 7.65, 7.51. ESI-HRMS Calcd. for C₂₃H₂₆N₂O [M+H]⁺: 347.2118; found 347.2128.

3-(2-isopropyl-1-naphthyl)-N-(2-ethyl-2-propyl)isonicotinamide (3cC)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3cC** (136 mg, 76% yield) as a pale yellow oil in 80% ee. $[\alpha]_D^{25} = +25.3$ (c = 1.2, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 7.7 min (major isomer) and 5.6 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.86 (d, *J* = 4.0 Hz, 1H), 8.56 (s, 1 H), 7.91-8.01 (m, 3H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.41-7.52 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 1H), 5.23 (s, 1H), 2.72-2.79 (m, 1H), 1.22 (t, *J* = 8.0 Hz, 6H), 1.00-1.17 (m, 2H), 0.69 (s, 3H), 0.57 (s, 3H), 0.26 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.26, 151.78, 149.94, 145.31, 143.60, 132.71, 132.02, 130.89, 130.50, 129.56, 128.32, 127.41, 125.88, 125.16, 124.16, 123.18, 54.05, 32.27, 30.86, 25.31, 25.18, 24.31, 23.09, 7.66. ESI-HRMS Calcd. for C₂₄H₂₈N₂O [M+H]⁺: 361.2274; found 361.2280.

3-(2,4-dimethyl-1-naphthyl)-N-(2-ethyl-2-propyl)isonicotinamide (3cD)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3cD** (157 mg, 91% yield) as a pale yellow oil in 64% ee. $[\alpha]_D^{25} = +17.4$ (c = 1.5, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] OD-H, 254 nm, n-hexane : i-PrOH = 97 : 3 as the eluent, flow rate: 1 mL/min, retention times: 14.2 min (major isomer) and 11.0 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.82 (s, 1H), 8.52 (s, 1 H), 8.06 (d, *J* = 4.0 Hz, 1H), 7.94 (s, 1H), 7.49-7.51 (m, 1H), 7.40-7.43 (m, 1H), 7.23(s, 1H), 7.25-7.27 (m, 1H), 5.22 (s, 1 H), 2.75 (s, 3H), 2.18 (s, 3H), 1.06-1.13 (m, 2H), 0.65 (s, 6H), 0.25 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.48, 152.03, 149.86, 143.60, 135.52, 134.59, 132.83, 131.41, 131.33, 130.28, 129.54, 127.05, 125.59, 125.25, 124.55, 123.10, 53.93, 32.46, 25.24, 25.14, 20.59, 19.40, 7.55. ESI-HRMS Calcd. for C₂₃H₂₆N₂O [M+H]⁺: 347.2118; found 347.2116.

3-(2-methyl-1-naphthyl)-N-(cyclohexyl)isonicotinamide (3dA)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3dA** (153 mg, 89% yield) as a colorless oil in 57% ee. $[\alpha]_D^{25} = +15.2$ (c = 1.2, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 31.3 min (major isomer) and 26.7 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.85 (d, *J* = 4.0 Hz, 1H), 8.54 (s, 1 H), 7.90-7.98 (m, 3H), 7.41-7.51 (m, 3H), 7.26 (d, *J* = 8.0 Hz, 1H), 5.32 (s, 1H), 3.52-3.54 (m, 1H), 2.22 (s, 3H), 0.80-1.35 (m, 8H), 0.18-1.37 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 164.38, 151.84, 149.85, 142.83, 134.95, 132.63, 132.09, 131.96, 131.31, 128.99, 128.75, 128.35, 127.36, 125.71, 124.56, 124.46, 123.20, 47.63, 31.62, 31.55, 25.09, 23.68, 20.69. ESI-HRMS Calcd. for C₂₃H₂₄N₂O [M+H]⁺: 345.1961; found 345.1968.

3-(2-ethyl-1-naphthyl)-N-(cyclohexyl)isonicotinamide (3dB)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3dB** (93 mg, 52% yield) as a pale yellow oil in 70% ee. $[\alpha]_D^{25} = +20.6$ (c = 0.8, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 10.7 min (major isomer) and 9.2 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.83 (d, *J* = 4.0 Hz, 1H), 8.54 (s, 1 H), 7.88-7.99 (m, 3H), 7.38-7.53 (m, 3H), 7.21 (d, *J* = 8.0 Hz, 1H), 5.37 (s, 1H), 3.50-3.52 (m, 1H), 2.47-2.52 (m, 2H), 0.78-1.34 (m, 11H), 0.14-0.31 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 164.22, 151.99, 149.84, 142.82, 140.87, 132.66, 132.06, 131.21, 131.00, 129.36, 128.33, 127.33, 127.30, 125.81, 124.82, 123.24, 47.60, 31.62, 31.45, 26.97, 25.07, 23.64, 23.59, 15.28. ESI-HRMS Calcd. for C₂₄H₂₆N₂O [M+H]⁺: 359.2118; found 359.2115.

3-(2-isopropyl-1-naphthyl)-N-(cyclohexyl)isonicotinamide (3dC)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3dC** (61 mg, 33% yield) as a pale yellow oil in 67% ee. $[\alpha]_D^{25} = +12.6$ (c = 1.5, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] AD-H, 254 nm, n-hexane : i-PrOH = 90 : 10 as the eluent, flow rate: 1 mL/min, retention times: 12.3 min (major isomer) and 8.3 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.86 (d, *J* = 4.0 Hz, 1H), 8.56 (s, 1 H), 7.99-8.02 (m, 2H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.41-7.52 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 1H), 5.37 (s, 1H), 3.46-3.59 (m, 1H), 2.73-2.76 (m, 1H), 0.82-1.35 (m, 14H), 0.20-0.28 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 164.15, 151.88, 149.93, 145.27, 142.69, 132.57, 132.06, 131.11, 130.41, 129.86, 128.31, 127.42, 125.94, 125.17, 124.13, 123.40, 47.66, 31.71, 31.46, 30.90, 25.09, 24.18, 23.57, 23.23. ESI-HRMS Calcd. for C₂₅H₂₈N₂O [M+H]⁺: 373.2274; found 373.2276.

3-(2-methyl-1-naphthyl)-N-(cyclohexyl)isonicotinamide (3dD)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3dD** (161 mg, 90% yield) as a pale yellow oil in 62% ee. $[\alpha]_D^{25} = +19.8$ (c = 1.8, CH₂Cl₂). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] OD-H, 254 nm, n-hexane : i-PrOH = 97 : 3 as the eluent, flow rate: 1 mL/min, retention times: 14.3 min (major isomer) and 19.7 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.82 (s, 1H), 8.52 (s, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.97 (s, 1H), 7.49-7.51 (m, 1H), 7.39-7.43 (m, 1H), 7.33(s, 1H), 7.24-7.26 (m, 1H), 5.42 (s, 1H), 3.46-3.63 (m, 1H), 2.74 (s, 3H), 2.17 (s, 3H), 0.81-1.25 (m, 8H), 0.18-0.42 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 164.37, 152.10, 149.76, 142.79, 135.56, 134.53, 132.74, 131.57, 131.33, 130.16, 129.52, 127.01, 125.58, 125.21, 124.53, 123.22, 47.45, 31.51, 31.40, 25.18, 23.49, 23.40, 20.58, 19.40. ESI-HRMS Calcd. for C₂₄H₂₆N₂O [M+H]⁺: 359.2118; found 359.2120.

3-(2-isopropylnaphthalen-1-yl)-4-nitropyridine (3eC)

The reaction was conducted for 96 h at 80 °C according to the general procedure to give the title compound **3eC** (63 mg, 43% yield) as a pale yellow oil in 73% ee. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column [Daicel chiracel[®] OJ-H, 214 nm, n-hexane : i-PrOH = 95 : 5 as the eluent, flow rate: 1 mL/min, retention times: 43.0 min (major isomer) and 24.8 min (minor isomer)]. ¹H NMR (400 MHz, CDCl₃): δ 8.89 (d, *J* = 4.0 Hz, 1H), 8.72 (s, 1H), 7.92-7.96 (m, 2H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.42-7.46 (m, 1H), 7.33-7.38 (m, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 2.59-2.64 (m, 1H), 1.19-1.24 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ . 155.08, 154.57, 151.06, 144.83, 132.23, 131.86, 129.75, 128.23, 128.15, 127.17, 126.83, 125.52, 124.93, 123.65, 116.62, 31.60, 24.26, 23.11. ESI-HRMS Calcd. for C₁₈H₁₆N₂O₂ [M+H]⁺: 293.1285; found 293.1275.

NMR Spectra

¹H NMR (400 MHz, CDCl₃) of 1a

¹³C NMR (100 MHz, CDCl₃) of **1b**

¹³C NMR (100 MHz, CDCl₃) of 1c

 ^{13}C NMR (100 MHz, CDCl₃) of 1d

¹H NMR (400 MHz, CDCl₃) of 3aA

¹³C NMR (100 MHz, CDCl₃) of **3aA**

¹H NMR (400 MHz, CDCl₃) of **3aB**

¹³C NMR (100 MHz, CDCl₃) of 3aB

¹H NMR (400 MHz, CDCl₃) of **3aC**

¹³C NMR (100 MHz, CDCl₃) of **3aC**

¹H NMR (400 MHz, CDCl₃) of **3aD**

¹³C NMR (100 MHz, CDCl₃) of **3aD**

¹H NMR (400 MHz, CDCl₃) of **3bA**

¹³C NMR (100 MHz, CDCl₃) of **3bA**

¹³C NMR (100 MHz, CDCl₃) of **3bB**

¹H NMR (400 MHz, CDCl₃) of **3bC**

¹³C NMR (100 MHz, CDCl₃) of **3bC**

¹³C NMR (100 MHz, CDCl₃) of **3bD**

¹H NMR (400 MHz, CDCl₃) of **3cA**

¹³C NMR (100 MHz, CDCl₃) of 3cA

¹H NMR (400 MHz, CDCl₃) of **3cB**

¹³C NMR (100 MHz, CDCl₃) of **3cB**

¹H NMR (400 MHz, CDCl₃) of **3cC**

¹³C NMR (100 MHz, CDCl₃) of **3cC**

¹H NMR (400 MHz, CDCl₃) of **3cD**

¹³C NMR (100 MHz, CDCl₃) of **3cD**

¹H NMR (400 MHz, CDCl₃) of **3dA**

¹³C NMR (100 MHz, CDCl₃) of **3dA**

¹³C NMR (100 MHz, CDCl₃) of **3dB**

¹H NMR (400 MHz, CDCl₃) of **3d**C

¹³C NMR (100 MHz, CDCl₃) of **3dC**

¹H NMR (400 MHz, CDCl₃) of **3dD**

¹³C NMR (100 MHz, CDCl₃) of **3dD**

¹H NMR (400 MHz, CDCl₃) of **3eC**

¹³C NMR (100 MHz, CDCl₃) of **3dD**

HPLC SPECTRA

The top one is racemic and the bottom one is chiral.

S38

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.813	BB	1.5428	1365.80103	10.45008	13.2920
2	42.994	BB	3.0646	8909.54688	34.16272	86.7080