Supporting information (Manuscript ID PP-ART-04-2018-000157)

Fluorescence “off” and “on” signalling of esculetin in presence of copper and thiol: A possible implication in cellular thiol sensing

Rupali G. Shindea,b, Ayesha A. Khana, Amit Kunwarb, V. S. Tripathib, Atanu Barikb*

\textbf{Fig. S1} UV-Visible absorption spectra of esculetin (50 \(\mu\text{M}\)) with Cu(II) (5-100 \(\mu\text{M}\)) in pH 7 phosphate buffer (10 mM). Inset shows ratiometric change in absorbance of Cu(II) to Esculetin at 350 nm (a) and 389 nm (b).

\textbf{Fig. S2} Jobs plot of esculetin (50 \(\mu\text{M}\)) with Cu(II) (50 \(\mu\text{M}\)) in pH 7 phosphate buffer (10 mM)

\textbf{Fig. S3} plot of log\([\text{F}_{\text{max}}/\text{F}]/\text{log(Cu(II))}\) versus log[Cu(II)] for titration of Cu(II) (10-50 \(\mu\text{M}\)) with esculetin (50 \(\mu\text{M}\)) in pH 7 phosphate buffer (10 mM). \(\lambda_{\text{ex}} = 360\text{ nm, } E_{\text{ex}}/E_{\text{em}} \text{ Slit} = 2.5\text{ nm.}\)

\textbf{Fig. S4} Time course measurement of esculetin (50 \(\mu\text{M}\)) and Cu(II) (80 \(\mu\text{M}\)) with GSH (200 \(\mu\text{M}\)) in pH 7 phosphate buffer (10 mM). \(\lambda_{\text{ex}} = 360\text{ nm, } \lambda_{\text{em}} = 466\text{ nm, } E_{\text{ex}}/E_{\text{em}} \text{ Slit} = 2.5\text{ nm.}\)

\textbf{Fig. S5} HRMS spectra of esculetin (500 \(\mu\text{M}\)) and Cu(II) (800 \(\mu\text{M}\)) in pH 7 phosphate buffer (10 mM). ‘Esc’ refers to Esculetin

\textbf{Fig. S6} Cyclic voltamogramm of 800 \(\mu\text{M}\) Cu(II), 500 \(\mu\text{M}\) esculetin and mixture of the above two compounds in 0.1 M NaClO\textsubscript{4} used as supporting electrolyte.

\textbf{Fig. S7} UV-Visible absorption spectra of esculetin (50 \(\mu\text{M}\)), Cu(II) (80 \(\mu\text{M}\)) with GSH (10-200 \(\mu\text{M}\)) in pH 7 phosphate buffer (10 mM). Inset shows change in absorbance in presence of GSH at 350 nm (a) and 389 nm (b).

\textbf{Fig. S8} UV-Visible absorption spectra esculetin (50 \(\mu\text{M}\)) in absence and presence of GSH (20-200 \(\mu\text{M}\)) in pH 7 phosphate buffer (10 mM).

\textbf{Fig. S9} Fluorescence spectra of esculetin (50 \(\mu\text{M}\)) in absence and presence of GSH (20-200 \(\mu\text{M}\)) in pH 7 phosphate buffer (10 mM). \(\lambda_{\text{ex}} = 360\text{ nm, } E_{\text{ex}}/E_{\text{em}} \text{ Slit} = 2.5\text{ nm.}\)

\textbf{Fig. S10} HRMS spectra of GSH (3 \(\mu\text{M}\)) in pH 7 phosphate buffer (10 mM).

\textbf{Fig. S11}. Relative fluorescence ‘on/off’ cycles of Cu(II)-esculetin by the subsequent addition of 200 \(\mu\text{M}\) of GSH/NEM. \(\lambda_{\text{ex}} = 360\text{ nm, } \lambda_{\text{em}} = 466\text{ nm, } E_{\text{ex}}/E_{\text{em}} \text{ Slit} = 2.5\text{ nm.}\)

\textbf{Fig. S12}. Cell viability study of CHO cells by MTT assay in presence of 25 \(\mu\text{M}\) esculetin, 40 \(\mu\text{M}\) Copper (II) and mixture of 25 \(\mu\text{M}\) esculetin & 40 \(\mu\text{M}\) Copper (II) ion. The results are presented as mean \(\pm\) SD, \(n = 2\). *p \(<\) 0.05 compared to control cells by T-test.
Fig. S1 UV-Visible absorption spectra of esculetin (50 µM) with Cu(II) (5-100 µM) in pH 7 phosphate buffer (10 mM). Inset shows ratiometric change in absorbance of Cu(II) to Esculetin at 350 nm (a) and 389 nm (b).

Fig. S2 Jobs plot of esculetin (50 µM) with Cu(II) (50 µM) in pH 7 phosphate buffer (10 mM).
Fig. S3 plot of log[(F-F₀)/(F_{max}-F)] versus log[Cu(II)] for titration of Cu(II) (10-50 µM) with esculetin (50 µM) in pH 7 phosphate buffer (10 mM). \(\lambda_{ex} = 360 \text{ nm} \), \(E_x/E_m \text{ Slit} = 2.5 \text{ nm} \).

Fig. S4 Time course measurement of esculetin (50 µM) and Cu(II) (80 µM) with GSH (200 µM) in pH 7 phosphate buffer (10 mM). \(\lambda_{ex} = 360 \text{ nm} \), \(\lambda_{em} = 466 \text{ nm} \), \(E_x/E_m \text{ Slit} = 2.5 \text{ nm} \).
Fig. S5 HRMS spectra of esculetin (500 µM) and Cu(II) (800 µM) in pH 7 phosphate buffer (10 mM). ‘Esc’ refers to Esculetin

Fig. S6 Cyclic voltammogram of 800 µM Cu(II), 500 µM esculetin and mixture of the above two compounds in 0.1 M NaClO₄ used as supporting electrolyte.
Fig. S7 UV-Visible absorption spectra of esculetin (50 µM), Cu(II) (80 µM) with GSH (10-200 µM) in pH 7 phosphate buffer (10 mM). Inset shows change in absorbance in presence of GSH at 350 nm (a) and 389 nm (b).

Fig. S8 UV-Visible absorption spectra esculetin (50 µM) in absence and presence of GSH (20-200 µM) in pH 7 phosphate buffer (10 mM).
Fig. S9 Fluorescence spectra of esculetin (50 µM) in absence and presence of GSH (20-200 µM) in pH 7 phosphate buffer (10 mM). $\lambda_{ex} = 360$ nm, E_x/E_m Slit = 2.5 nm.

Fig. S10 HRMS spectra of GSH (3 mM) in pH 7 phosphate buffer (10 mM).
Fig. S11. Relative fluorescence 'on/off' cycles of Cu(II)-esculetin by the subsequent addition of 200 µM of GSH/NEM. $\lambda_{ex} = 360$ nm, $\lambda_{em} = 466$ nm, E_x/E_m Slit = 2.5 nm.

Fig. S12. Cell viability study of CHO cells by MTT assay in presence of 25 µM esculetin, 40 µM Copper (II) and mixture of 25 µM esculetin & 40 µM Copper (II) ion. The results are presented as mean ± SD, n = 2. *p < 0.05 compared to control cells by T-test.