Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2018

Supporting Information

A multifunctional selective "turn-on" fluorescent chemosensor for detection of Group IIIA ions Al³⁺, Ga³⁺ and In³⁺

Hyo Jung Jang, Ji Hye Kang, Dongju Yun, Cheal Kim*

Depart. of Fine Chem., Seoul National Univ. of Sci. and Tech., Seoul 139-742, *Korea*. *Fax:* +82-2-973-9140; *Tel:* +82-2-970-6681; *E-mail:* <u>chealkim@seoultech.ac.kr</u> The method of determination of association constant (*K*). Based on the literatures [1,2], the association constant (*K*) of sensor 1 (L) with Al^{3+} , Ga^{3+} and In^{3+} (M) can be expressed by the following equations, where (L) and (M) are assumed to form a complex with a complexation ratio of m:n.

$$[M]^{m} = \frac{1}{nK_{[L]}^{n-1}} \frac{1-\alpha}{\alpha^{n}}, \quad \alpha = \frac{[L]}{[L]_{T}}$$

 α is defined as the ratio between the free ligand concentration [L] and the initial concentration of ligand [L]_T.

References

- C.-Y. Li, X.-B. Zhang, Y.-Y. Dong, Q.-J. Ma, Z.-X. Han, Y. Zhao, G.-L. Shen and R.-Q. Yu, A porphyrin derivative containing 2-(oxymethyl)pyridine units showing unexpected ratiometric fluorescent recognition of Zn²⁺ with high selectivity, Anal. Chim. Acta., 2008, 616, 214-221.
- [2] G. Grynkiewicz, M. Poenie and R.Y. Tsien, A new generation of Ca²⁺ indicators with greatly improved fluorescence properties, J. Biol. Chem., 1985, 260, 3440-3450.

Sensor	Detection limit (µM)	Binding constant	Water % in solvent	Method of detection	Reference
CHO CHO CHO CHO	No data	7.4×10^{3}	0%	Fluorescence	[1]
N SCH ₃ CO ₂ CH ₂ CH ₃	0.19	No data	0%	Fluorescence	[2]
	No data	No data	0%	Fluorescence	[3]
	2	1.4×10^5	0%	Fluorescence	[4]
	10	No data	50%	Fluorescence Naked eye	[5]
	7.92	1.0×10^8	0%	Fluoresecnce	this work

Table S1. Examples for the detection of In^{3+} by organic chemosensors.

References

[1] S.K. Kim, S.H. Kim, H.J. Kim, S.H. Lee, S.W. Lee, J. Ko, R.A. Bartsch and J.S. Kim, Indium(III)-Induced Fluorescent Excimer Formation and Extinction in Calix[4]arene–Fluoroionophores, Inorg. Chem., 2005, 44, 7866–7875.

- Y.-C. Wu, H.-J. Li and H.-Z. Yang, A sensitive and highly selective fluorescent sensor for In(3+), Org. Biomol. Chem., 2010, 8, 3394–3397.
- [3] D.Y. Han, J.M. Kim, J. Kim, H.S. Jung, Y.H. Lee, J.F. Zhang and J.S. Kim, ESIPT-based anthraquinonylcalix[4]crown chemosensor for In³⁺, Tetrahedron Lett., 2010, **51**, 1947– 1951.
- [4] H. Kim, K.B. Kim, E.J. Song, I.H. Hwang, J.Y. Noh, P.G. Kim, K.D. Jeong and C. Kim, Turn-on selective fluorescent probe for trivalent cations, Inorg. Chem. Commun., 2013, 36, 72–76.
- [5] Y.-M. Kho and E. Shin, Spiropyran-Isoquinoline Dyad as a Dual Chemosensor for Co(II) and In(III) Detection, Molecules, 2017, 22, 1569–1582.

Fig. S1 (a) 1 H NMR and (b) 13 C NMR spectra of 1.

Fig. S2 Time-dependent fluorescence intensity changes of 1 (20 μ M) in the presence of Al³⁺ in MeOH with excitation at 368 nm.

Fig. S3 Job plot of 1 and Al³⁺. The total concentration of 1 and Al³⁺ was 20 μ M.

Fig. S4 Positive-ion electrospray ionization mass spectrum of 1 (100 μ M) upon addition of 1.0 equiv of Al(NO₃)₃.

Fig. S5 Li's equation of 1 (20 μ M) for Al³⁺, assuming 2:1 stoichiometry for association of 1 with Al³⁺.

Fig. S6 Detection limit of 1 (20 μ M) for Al³⁺ through change of fluorescence intensity.

Fig. S7 Competitive selectivity of 1 (20 μ M) toward Al³⁺ (22 equiv) in the presence of other metal ions (22 equiv).

Fig. S8 Color changes of 1, $Ga^{3+}-2\cdot 1$ and $In^{3+}-2\cdot 1$.

Fig. S9 UV-vis spectral changes of 1 (20 μ M) in the presence of different concentrations of Ga³⁺ ion.

Fig. S10 Job plot of 1 and Ga³⁺. The total concentration of 1 and Ga³⁺ was 20 μ M.

Fig. S11 Positive-ion electrospray ionization mass spectrum of 1 (100 μ M) upon addition of 1.0 equiv of Ga(NO₃)₃.

Fig. S12 Li's equation of 1 (20 μ M) for Ga³⁺, assuming 2:1 stoichiometry for association of 1 with Ga³⁺.

Fig. S13 Competitive selectivity of 1 (20 μ M) toward Ga³⁺ (9 equiv) in the presence of other metal ions (9 equiv).

Fig. S14 Job plot of 1 and In³⁺. The total concentration of 1 and In³⁺ was 20 μ M.

Fig. S15 Li's equation of 1 (20 μ M) for In³⁺, assuming 2:1 stoichiometry for association of 1 with In³⁺.

Fig. S16 Detection limit of 1 (20 μ M) for In³⁺ through change of fluorescence intensity.

Fig. S17 Competitive selectivity of 1 (20 μ M) toward In³⁺ (9 equiv) in the presence of other metal ions (9 equiv).

Fig. S18 (a) The theoretical excitation energies (TD-DFT method) and the experimental UVvis spectrum of 1. (b) The major electronic transition energies and molecular orbital contributions of 1 (H = HOMO and L = LUMO).

Fig. S19 (a) The theoretical excitation energies (TD-DFT method) and the experimental UVvis spectrum of $Al^{3+}-2\cdot 1$ complex. (b) The major electronic transition energies and molecular orbital contributions of $Al^{3+}-2\cdot 1$ complex (H = HOMO and L = LUMO).

Fig. S20 (a) The theoretical excitation energies (TD-DFT method) and the experimental UVvis spectrum of $Ga^{3+}-2\cdot 1$ complex. (b) The major electronic transition energies and molecular orbital contributions of $Ga^{3+}-2\cdot 1$ complex (H = HOMO and L = LUMO).

Excited state 12	Wavelength (nm)	Percent (%)	Main character	Oscillator strength
$H-1 \rightarrow L+2$	387.68	43	ICT	1.5361
$H \rightarrow L+3$		47	ICT	

Fig. S21 (a) The theoretical excitation energies (TD-DFT method) and the experimental UVvis spectrum of $In^{3+}-2\cdot 1$ complex. (b) The major electronic transition energies and molecular orbital contributions of $In^{3+}-2\cdot 1$ complex (H = HOMO and L = LUMO).

(b)

Fig. S22 Molecular orbital diagrams of 1 with (a) $Al^{3+}-2\cdot 1$, (b) $Ga^{3+}-2\cdot 1$ and (c) $In^{3+}-2\cdot 1$ complexes.