Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2018

Supporting Information

Rosindone Revisited: A Computational and Photophysical Study of 7-Phenylbenzo[a]phenazine-5(7H)-one (PBP)

Dumitru Sirbu, Rebecca Wales, David R. Geary, Paul G. Waddell and Andrew C.

Benniston

Contents

Table S1. DFT calculated dipole moments and wavelength maximum values for **PBP** in various solvents. Selection of Kohn-Sham frontier molecular orbitals to illustrate those involved in the long wavelength absorption band.

S1. Comparison of TD-DFT calculated bond lengths for the ground and first excited singlet state structures for **PBP** in a MeCN solvent bath. Note the small alterations on bond lengths in ring A and B suggesting that they are not involved to any major extent in changes in electron delocalisation.

Table S2. Bond order (NBO) for C-C bonds calculated using Pauling's expression $D = D_1 - 0.70 \log NBO$ and where D is the observed bond length and D_1 is the expected bond length (1.504 Å).

S2. DFT B3LYP, 6-311G+(d) calculated molecular geometries of **PBP** in the gas phase as the phenyl group is rotated through 360° at 5° intervals starting at step 1.

S3. Relative energies of **PBP** in the ground state (black) and first excited state (red) versus the dihedral angle at the *N*-phenyl subunit calculated using a semi-empirical (AM1) method. Each point represents a change in angle of 10° .

S4. MM⁺ single angle calculation results for **PBP** as the phenyl group is rotated using the program Chem3D.

S5. Selected absorption profile for **PBP** showing the actual spectrum (black) and reconstructed spectrum (red) using the constant half-width Guassian profiles (blue). The green line shows the fitted baseline.

 Table S3. Crystal data and structure refinement of PBP.

S6. Crystal packing diagram for **PBP**.

S7. Fit of quantum yields to solvent viscosity using the Forster-Hoffmann equation for the linear mono-protic alkanol solvents. Dashed line depicts least squares fit to the data points and the goodness-of-fit. Insert shows the linear equation and R².

S8. Relationship between Stokes Shift (SS) and the solvent Pekar function ΔF for a range of protic and aprotic solvents.

S9. Variation of the quantum yield of fluorescence (ϕ_F) with the dielectric constant (ϵ) for a range of protic and aprotic solvents.

S10. Variation of the quantum yield of fluorescence (ϕ_F) with the reciprocal of the dielectric constant (ϵ) for a range of linear mono-protic alkanol solvents.

S11. Corrected phosphorescence spectrum recorded for PBP in an ethanol glass at 80K.

S12. The change in fluorescence with decreasing temperature for a solution of **PBP** in ethanol. Insert show the plot for calculation of the activation energy using the Arrhenius expression.

S13. Excitation spectrum (black) and emission spectrum (red) recorded for **PBP** in an ethanol glass at 80K.

S14. ¹H NMR (700 MHz, CDCl₃) spectrum of **PBP**.

S15. ¹³C NMR (175 MHz, CDCl₃) spectrum of **PBP**.

Table S1. DFT calculated dipole moments and wavelength maximum values for **PBP** in a selection of solvents with different polarity.

Solvent	Dipole Moment / D	λ_{max} / $nm^{b,c}$	Molecular Orbitals ^{d,e}
Gas-phase	5.55	463 (0.187)	82-85 (0.017)
			84-85 (0.462)
			84-86 (0.011)
MeCN	8.95	475 (0.281)	83-85 (0.012)
			84-85 (0.473)
CHEX ^f	6.70	475 (0.285)	82-85 (0.011)
			84-85 (0.474)
DMSO ^g	9.00	477 (0.296)	83-85 (0.011)
			84-85 (0.474)
THF ^h	8.23	476 (0.289)	83-85 (0.011)
			84-85 (0.474)
DCM ^j	8.37	477 (0.293)	83-85 (0.011)
			84-85 (0.474)
Toluene	6.95	476 (0.298)	84-85 (0.476)
MeOH	8.93	475 (0.277)	83-85 (0.012)
			84-85 (0.472)

^a DFT calculated parameters using B3LYP and 6-311G+(d) basis set and IEFPCM in Gaussian 09. ^bCalculated using TD-DFT and IEFPCM in Gaussian 09. ^cCalculated oscillator strength, ^d numbering of molecular orbitals involved in the absorption envelope, ^e square of molecular orbital coefficient, ^fcyclohexane, ^gdimethylsulfoxide, ^htetrahydrofuran, ^j dichloromethane

Selected Kohn-Sham Frontier Molecular Orbitals

Gas Phase + Cyclohexane

Ground State (Dipole Moment = 8.95D)

First Excited Singlet State (Dipole Moment = 9.71D)

S1. Comparison of TD-DFT calculated bond lengths for the ground and first-excited singlet state structures for **PBP** in a MeCN solvent bath. Note the changes in the bond orders are collected in Table 1.

Table S2 . Bond order (NBO) for C-C bonds calculated using Pauling's expression $D = D_1$ -
0.70 log NBO and where D is the observed bond length and D_1 is the expected bond length
(1.504 Å).

Ground State		Excited State			
D/Å	Ν _{во}	D/Å	Ν _{во}	Δ N _{BO}	% Change
1.376	1.52	1.407	1.38	-0.14	-9.2
1.434	1.26	1.454	1.18	-0.08	-6.3
1.490	1.05	1.461	1.15	0.1	9.5
1.400	1.41	1.408	1.37	-0.04	-2.8
1.388	1.47	1.384	1.48	0.01	0.68
1.400	1.41	1.408	1.37	-0.04	-2.8
1.387	1.47	1.384	1.48	0.01	0.68
1.405	1.39	1.416	1.34	-0.05	-3.6
1.409	1.37	1.427	1.29	-0.08	-5.8
1.470	1.12	1.441	1.23	0.11	9.8
1.467	1.13	1.426	1.29	0.16	14.1
1.405	1.39	1.405	1.39	0	0
1.386	1.47	1.385	1.48	0.01	0.68
1.404	1.39	1.411	1.36	-0.03	-2.2
1.382	1.49	1.380	1.50	0.01	0.67
1.409	1.37	1.419	1.32	-0.05	-3.6
1.417	1.33	1.445	1.21	-0.12	-9.0

Overall change -9.19%

S2. DFT B3LYP, 6-311G+(d) calculated molecular geometries of **PBB** in the gas phase as the phenyl group is rotated through 360° at 5° intervals starting at step 1.

S3. Relative energies of **PBP** in the ground state (black) and first-excited state (red) versus the dihedral angle at the *N*-phenyl subunit calculated using a semi-empirical (AM1) method. Each point represents a change in angle of 10°.

S4. MM⁺ single angle calculation results for **PBP** as the phenyl group is rotated using the program Chem3D.

S5. Selected absorption profile for **PBP** showing the actual spectrum (black) and reconstructed spectrum (red) using the constant half-width Gaussian profiles (blue). The green line shows the fitted baseline.

Table S3. Crystal data and structure refinement for PBP

Empirical formula	$C_{22}H_{14}N_2O$
Formula weight	322.35
Temperature/K	150.0(2)
Crystal system	orthorhombic
Space group	Pbca
a/Å	8.23403(10)
b/Å	10.88902(13)
c/Å	34.4570(5)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3089.43(7)
Z	8
$\rho_{calc}g/cm^3$	1.386
μ/mm^{-1}	0.683
F(000)	1344.0
Crystal size/mm ³	$0.21 \times 0.12 \times 0.06$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	10.268 to 133.618
Index ranges	$-9 \le h \le 6, -10 \le k \le 12, -41 \le l \le 39$
Reflections collected	18745
Independent reflections	2720 [$R_{int} = 0.0319, R_{sigma} = 0.0176$]
Data/restraints/parameters	2720/0/226
Goodness-of-fit on F ²	1.045
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0338, wR_2 = 0.0851$
Final R indexes [all data]	$R_1 = 0.0411, wR_2 = 0.0905$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.22

S6. Crystal packing diagram for **PBP**.

 $\log \phi_{\text{FLU}} = \alpha \log \eta + C \text{ (Eq. 1)}$

S7. Fit of quantum yields to solvent viscosity using the Forster-Hoffmann equation for the linear mono-protic alkanol solvents. Dashed line depicts least squares fit to the data points and the goodness-of-fit. Insert shows the linear equation and R².

S8. Relationship between Stokes Shift (SS) and the solvent Pekar function ΔF for a range of protic and aprotic solvents.

S9. Variation of the quantum yield of fluorescence (ϕ_F) with the dielectric constant (ϵ) for a range of protic and aprotic solvents.

S10. Variation of the quantum yield of fluorescence (ϕ_F) with the reciprocal of the dielectric constant (ϵ) for a range of linear mono-protic alkanol solvents.

Given that $k_{NR} = k_{RAD}((1/\phi_{FLU})-1)$ and assuming k_{RAD} remains constant with temperature then a plot of $ln((1/\phi_{FLU})-1)$ vs 1/T will provide a slope = $-\Delta E/R$.

 k_{NR} = non-radiative rate, k_{RAD} = radiative rate, ΔE = activation energy and R = gas constant.

S12. The change in fluorescence with decreasing temperature for a solution of **PBP** in ethanol. Insert show the plot for calculation of the activation energy using the Arrhenius expression.

S13. Excitation spectrum (black) and emission spectrum (red) recorded for **PBP** in an ethanol glass at 80K.

S14. ¹H NMR (700 MHz, CDCl₃) spectrum of **PBP**.

S15. ¹³C NMR (175 MHz, CDCl₃) spectrum of **PBP**.