Supplementary information for

Endosomal escape by photo-activated fusion of liposomes containing a malachite green derivative: A novel class of photoresponsive liposomes for drug delivery vehicles

Authors
Keita Hayashi†, Mai Watanabe†, Tomoyuki Iwasaki‡, Masachika Shudou†, Ryoko M. Uda†,*

Affiliation
† Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoritama, Nara 639-1080, Japan
‡ Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan

Corresponding author. Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoritama, Nara 639-1080, Japan; TEL.: +81 0743 55 6164; fax: +81 0743 55 6169
E-mail address: ryoko@chem.nara-k.ac.jp (Ryoko M. Uda).
Figure S1 Encapsulation efficiency of DOX in the MGL liposome. Data are presented as the average (n = 3) ± standard deviation.
DOX-MGL liposomes were prepared and kept at 4 °C for 21 h, 3 day, and 10 day. The distributions of DOX-MGL liposomes after the storage were measured by dynamic light scattering (DLS) using a Nanotrac Wave UT151 (Nikkiso, Japan) and shown in Figure S2. Because any significant difference was not observed among them, the results of Figure S2 indicate that DOX-MGL liposomes were stable at 4 °C without aggregation in the time range measured.

Figure S2 Size distribution of DOX-MGL liposomes measured by DLS at room temperature. (a) 21 h, (b) 3 day, and (c) 10 day storage. [POPC] = 0.7 mM.

The effect of the storage of DOX-MGL liposomes at 4 °C on the cellular uptake was further evaluated by flow cytometry. Colon 26 cells were seeded and cultured as described in the experimental section. DOX-MGL liposomes were prepared and kept at 4 °C for 18 h, 3 day, and 10 day and then they were added to Colon 26 cells. After incubation, fluorescence intensities of DOX in the cells were measured using a flow cytometer. From the results of Figure S3, it is deduced that the storage at 4 °C hardly affected the uptake behavior of DOX-MGL liposomes.
Figure S3 Flow cytometric measurement of DOX-MGL liposomes uptake by Colon 26 cells. (a) 18 h, (b) 3 day, and (c) 10 day storage. [POPC] = 0.40 mM.
Figure S4 A cryo-TEM image of UV irradiated DOX-MGL liposomes.
Figure S5 Observations of Colon 26 cells treated with DOX liposomes ([DOX] = 0.16 mM, [POPC] = 0.43 mM) after UV irradiation. Blue: nucleus staining by Hoechst33342. Green: lipid staining by LysoTracker Green DND-26. Red: DOX.
Figure S6 Cell viability measurement of Colon 26 cells treated with MGL liposome before UV irradiation (UV (-)) and after UV irradiation (UV (+)). Each data point is the average ± standard deviation of three different experiments.
Figure S7 Cell viability measurement of Colon 26 cells treated with DOX-MGL liposomes before UV irradiation (UV (-)) and after UV irradiation (UV (+)). Each data point is the average ± standard deviation of three different experiments.