Supporting Information for

Stereoselective self-aggregation of synthetic zinc 3¹-epimeric bacteriochlorophyll-\textit{d} analogs possessing a methylene group at the 13²-position as models of green photosynthetic bacterial chlorosomes

Yoshiki Fujiwara and Hitoshi Tamiaki*

Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan. E-mail: tamiaki@fc.ritsumei.ac.jp
Fig. S1 Visible absorption spectral changes of 1R (A), 1S (B), 2R (C), and 2S (D) in an aqueous 0.025%(wt/v) Triton X-100 micelle solution just after preparation (blue) and after standing for 1 day (red).
Fig. S2 Synthesis of zinc methyl mesopyropheophorbide-\(\alpha\) (5) and its \(13^2\)-methylenated derivative 6.
Fig. S3 Visible absorption spectral changes of 5 (A) and 6 (C) in dry benzene (10 µM) by addition of pyridine and their curve fitting analyses (B) and (D).
Fig. S4 1H-NMR spectrum of methyl 13²-methylene-bacteriopheophorbide-d (4, 3^R:3^S = 1:1) in CDCl$_3$.

S5
Fig. S5 1H-NMR spectrum of zinc methyl (3^1R)-132-methylenebacteriopheophorbide-d (2R) in CDCl$_3$–5% pyridine-d$_5$.

S6
Fig. S6 1H-NMR spectrum of zinc methyl (31S)-132-methylene-bacteriopheophorbide-d (2S) in CDCl$_3$–5% pyridine-d_5.
Fig. S7 1H-NMR spectrum of zinc methyl 132-methylene-mesopyropheophorbide-a (6) in CDCl$_3$.

S8