Supporting Information

Scope and Limitations of Ring-Opening Copolymerization of Trimethylene Carbonate with Substituted γ-Thiolactones

M. Langlaisa, O. Couteliera, S. Moinsb, J. De Winterc, O. Coulembierb,* and M. Destaraca,**

aLaboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
*destarac@chimie.ups-tlse.fr

bLaboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 20, 7000 Mons, Belgium
*olivier.coulembier@umons.ac.be

cOrganic Synthesis and Mass Spectrometry Laboratory (S2MOS), University of Mons, Place du Parc 20, 7000 Mons, Belgium
Figure S1. SEC-RI chromatogram (normalized) of the isolated poly(TMC-co-TL0).

Figure S2. 1H NMR of the isolated poly(TMC-co-TL0) in CDCl$_3$.
Figure S3. SEC-RI chromatogram (normalized) of the isolated poly(CL-co-TL0).

\[
M_n = 4320 \text{ g.mol}^{-1} \\
D = 2.31
\]

Figure S4. \(^1\)H NMR of the isolated poly(CL-co-TL0) in CDCl\(_3\).
Figure S5. SEC-RI chromatogram (normalized) of the isolated poly(TMC-co-TL1) using Bz-OH as initiator.

Figure S6. SEC-RI chromatograms (normalized) of the isolated poly(TMC-co-TL2) using Bz-OH as initiator (a) and PM as initiator (b).
Figure S7. SEC-RI chromatogram (normalized) of the isolated poly(TMC-co-TL3).

Figure S8. SEC-RI chromatograms (normalized) of the isolated poly(TMC-co-TL1) with TBD as catalyst (a) and the isolated poly(TMC-co-TL1) with DBU as catalyst (b).
Figure S9. Isolated poly(TMC-co-TL2) using Bz-OH as initiator (A) and PM as initiator (B) under UV-light at $\lambda = 365$ nm.

Figure S10. MALDI-TOF MS spectra of the isolated poly(TMC-co-TL1)s.
Figure S11. DSC thermograms of the different polymers.

- poly(TMC); $T_g = -18.4 \, ^\circ C$
- poly(TMC-co-TL1); $T_g = -29.3 \, ^\circ C$
- poly(TMC-co-TL2); $T_g = -23.8 \, ^\circ C$
- poly(TMC-co-TL3); $T_g = -28.7 \, ^\circ C$
- poly(TMC-co-TL1); $T_g = -29.3 \, ^\circ C$