Supporting Information

Accelerating the acidic degradation of a novel thermoresponsive polymer by host-guest interaction

Peng Wei, a,b Stefan Götz, a,b Stephanie Schubert, a,c Johannes C. Brendel, a,b Ulrich S. Schubert *, a,b

a Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany

b Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University, Philosophenweg 7, 7743 Jena, Germany

c Institute of Pharmacy, Department of Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Str. 41, 07745 Jena, Germany

*Correspondence to: U. S. Schubert (E-mail: ulrich.schubert@uni-jena.de)
Synthesis of Compounds and Characterizations

\[
\begin{align*}
\text{HOOC-S-S-} & + \text{Br-} \text{OH} & \xrightarrow{\text{DCC, DMAP, rt}} & \text{OOC-S-S-} \\
\end{align*}
\]

\[85^\circ \text{C} \]

Scheme S1 Synthetic route of CTA 4.

Synthesis of 3

Compound 1 (1 g), DMAP (62.16 mg), and compound 2 (825 µL) were dissolved in anhydrous dichloromethane (20 mL). The flask was cooled to 0 °C in ice-water bath. Then DCC (1.2 g) in 10 mL of anhydrous dichloromethane was added dropwise and stirred for 24 h at room temperature. After filtration, the filtrate was concentrated and further purified by silica gel column chromatography using dichloromethane:n-hexane (2:1, v/v). After evaporating solvent in vacuum, a yellow liquid 3 was obtained (1.3 g, yield: 81.3%). \(^1\)H NMR (300 MHz, chloroform-\(d\)) \(\delta \) 4.83 (q, \(J = 7.4 \text{ Hz, 1H}\)), 4.27 – 4.04 (m, 2H), 3.41 (dt, \(J = 14.1, 7.1 \text{ Hz, 4H}\)), 1.87 (dt, \(J = 8.1, 6.6 \text{ Hz, 2H}\)), 1.78 – 1.55 (m, 7H), 1.53 – 1.35 (m, 6H), 0.96 (t, \(J = 7.3 \text{ Hz, 3H}\)).

Synthesis of 4

Compound 3 (800 mg) and 4-methylpyridine (792 µL) were added into a flask and reacted at 85 °C for 24 h, then purified by silica gel column chromatography using dichloromethane:methanol (10:1, v/v). After evaporating solvent under vacuum, a yellow syrupy liquid 4 was obtained (600 mg, yield: 60.7%). \(^1\)H NMR (300 MHz, chloroform-\(d\)) \(\delta \) 9.47 – 9.17 (m, 2H), 7.87 (d, \(J = 6.3 \text{ Hz, 2H}\)), 4.98 (t, \(J\)
$J = 7.4 \text{ Hz, 2H}$, 4.79 (q, $J = 7.4 \text{ Hz, 1H}$), 4.26 – 4.02 (m, 2H), 3.37 (td, $J = 7.2, 2.6 \text{ Hz, 2H}$), 2.70 (s, 3H), 2.22 – 1.92 (m, 2H), 1.77 – 1.56 (m, 7H), 1.51 – 1.35 (m, 6H), 0.94 (t, $J = 7.3 \text{ Hz, 3H}$).

Figure S1 $^1\text{H NMR (CDCl}_3, 300 \text{ MHz) spectrum of 3.}$
Figure S2 1H NMR (CDCl$_3$, 300 MHz) spectrum of CTA 4.
Figure S3 1H NMR (DMSO-d_6, 300 MHz) spectrum of P2.
Figure S4 SEC measurement of P1, P2 and P3.
Figure S5 Transmittance changes of polymer P2 with or without H1 and H2 by heating and cooling down temperature. Heating and cooling rate: 0.2 °C min⁻¹.
Figure S6 Transmittance changes of polymer **P2** without addition of **H2** and with different ratios of **H2** (1 eq., 1.5 eq. and 2 eq.). Heating rate: 0.2 °C min⁻¹.
Complexation between P2 and H1 or H2 at different temperatures in D$_2$O

Figure S7 1H NMR (D$_2$O, 300 MHz) spectrum of complexation at 23 °C. A) 1 eq. H1, B) mixture of H1 and P2, C) P2 (5 mg mL$^{-1}$).
Figure S8 \(^1\)H NMR (D\(_2\)O, 300 MHz) spectrum of complexation at 37 °C. A) 1 eq. H1, B) mixture of H1 and P2, C) P2 (5 mg mL\(^{-1}\)).
Figure S9 1H NMR (D$_2$O, 300 MHz) spectrum of complexation at 45 °C. A) 1 eq. H1, B) mixture of H1 and P2, C) P2 (5 mg mL$^{-1}$).
Figure S10 1H NMR (D$_2$O, 300 MHz) spectrum of complexation at 23 °C. A) 1 eq. H2, B) mixture of H2 and P2, C) P2 (5 mg mL$^{-1}$).
Figure S11 1H NMR (D$_2$O, 300 MHz) spectrum of complexation at 37 °C. A) 1 eq. H$_2$, B) mixture of H$_2$ and P$_2$, C) P$_2$ (5 mg mL$^{-1}$).
Figure S12 1H NMR (D$_2$O, 300 MHz) spectrum of complexation at 45 °C. A) 1 eq. H$_2$, B) mixture of H$_2$ and P$_2$, C) P$_2$ (5 mg mL$^{-1}$).
Hydrolysis measurement of polymers or complexation between polymer and pillar[5] arene in D$_2$O at different pH at 37 °C.

Figure S13 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P2 (5 mg mL$^{-1}$) at pH 7.4. A) 0 h, B) 3 h, C) 24 h, D) 48 h, E) 96 h, F) 120 h, G) 168 h, H) 216 h, and I) 264 h.
Figure S14 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P2 (5 mg mL$^{-1}$) with 1 eq. H1 at pH 7.4. A) 0 h, B) 3 h, C) 24 h, D) 48 h, E) 96 h, F) 120 h, G) 168 h, H) 216 h, and I) 264 h.
Figure S15 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P2 (5 mg mL$^{-1}$) with 1 eq. H2 at pH 7.4. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.
Figure S16 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P2 (5 mg mL$^{-1}$) with 5 eq. G1 at pH 7.4. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.
Figure S17 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P2 (5 mg mL$^{-1}$) at pH 5.2. A) 0 h, B) 3 h, C) 24 h, D) 48 h, E) 96 h, F) 120 h, G) 168 h, H) 216 h, and I) 264 h.
Figure S18 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P2 (5 mg mL$^{-1}$) with 1 eq. H1 at pH 5.2. A) 0 h, B) 3 h, C) 24 h, D) 48 h, E) 96 h, F) 120 h, G) 168 h, H) 216 h, and I) 264 h.
Figure S19 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P1 (5 mg mL$^{-1}$) at pH 5.2 A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.
Figure S20 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P1 (5 mg mL$^{-1}$) with 1 eq. H1 at pH 5.2. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.
Figure S21 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P3 (5 mg mL$^{-1}$) at pH 5.2. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.
Figure S22 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P3 (5 mg mL$^{-1}$) with 1 eq. H1 at pH 5.2. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.
Figure S23 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P2 (5 mg mL$^{-1}$) with 1 eq. H$_2$ at pH 5.2. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.
Figure S24 1H NMR (D$_2$O, 300 MHz) spectrum of hydrolysis of P2 (5 mg mL$^{-1}$) with 5 eq. G1 at pH 5.2. A) 0 h, B) 24 h, C) 48 h, D) 96 h, E) 120 h, F) 168 h, G) 216 h, and H) 264 h.
Association constant measurement between P2 and H1 or P2 and H2 by ITC

Figure S25 Association constant between P2 and H1.
Figure S26 Association constant between P2 and H2.