Converting natural rubber waste into Ring-opening Metathesis polymers with oligo-1,4-cis-isoprene sidechains

M. Abbas, a,b M. Neubauer a and C. Slugovc*, a

a Institute for Chemistry and Technology of Materials, Graz University of Technology, NAWI Graz, Stremayrgasse 9, A 8010 Graz, Austria.
E-mail: slugovc@tugraz.at

b School of Textile and Design, University of Management and Technology, C-II Johar Town Lahore 54770, Pakistan

ELECTRONIC SUPPORTING INFORMATION
General

Nuclear magnetic resonance experiments were done on a Bruker Avance 300 MHz spectrometer (\(^1\)H: 300.36 MHz; \(^{13}\)C: 75.53 MHz) at 25 °C. Chemical shifts are given in ppm relative to a tetramethylsilan (TMS) standard. Deuterated solvents were obtained from Cambridge Isotope laboratories Inc. and spectra were referenced against the residual proton signals according to literature.\(^1\)

GC-MS analyses were carried out on an Agilent Technologies 7890A GC system equipped with a 5975C mass selective detector (inert MSD with Triple Axis Detector system, EI, 70 eV). Samples were injected by employing autosampler 7683B in a split mode 1/25 (inlet temperature: 250 °C; injection volume: 0.1 μL) and separated on an Agilent Technologies J&W GC HP-5MS capillary column (30 m x 0.2 mm x 0.25 μm) at a constant helium flow rate (He 5.0 (Air Liquide), 1.000 mL/min, average velocity 36.5 cm/sec). A general gradient temperature method was used (initial temperature: 50 °C for 1 min, linear increase to 300 °C (40 °C.min\(^{-1}\)), hold for 1 min, 1 min post-run at 300 °C, detecting range: 50.0-550.0 amu, solvent delay of 2.80 min).

Differential scanning calorimetry (DSC) analyses were measured on a DSC 8500 instrument from Perkin Elmer in a temperature range from -20 to 100°C with a heating rate of 20°C/min for the first run and with 20°C/min in the second run (\(T_g\) values were retrieved from the second heating run).

Thermogravimetric analyses (TGA) were performed with a Netzsch Simultaneous Thermal Analyzer STA 449C (crucibles: aluminium from Netzsch). A helium flow of 35 mL min\(^{-1}\) was used in combination with a protective flow of helium of 8 mL min\(^{-1}\). The heating rate until a final temperature of 550 °C was 10 °C min\(^{-1}\).

Gel permeation chromatography (GPC) was carried out on a system provided by WGE Dr. Bures operated with THF (separating columns from MZ-Gel SD plus, linear 5μ; UV und RI detector SEC 3010). Poly(styrene) standards purchased from Polymer Standard Service were used for calibration.

Degradation of natural rubber gloves

2.01 g natural rubber gloves (Kimtech PFE Cat. III AQL 1.5; i.e. approx. 29.5 mmol double bonds) of finely chopped rubber gloves were put in a 100 mL Schlenk tube equipped with a magnetic stirrer bar under nitrogen atmosphere and suspended in 40 mL of toluene (Sigma Aldrich, 99.9%). After 25 min ethyl prop-2-enoate (ethyl acrylate, Fluka, >99%; 15 mL, 13.8 g, 138 mmol, 4.7 eq. in respect to double bonds) was added and the reaction mixture was heated to 80°C. After 2 h 98.6 mg of M51 (0.151 mmol, i.e. 0.5 mol% in respect to double bonds) was added and the reaction mixture was heated at 80°C for 22 h. After cooling down, ethyl vinyl ether (0.2 mL) was added and the reaction mixture was stirred for further 20 min. After that, insoluble parts were removed by filtration and volatile parts of the filtrate were removed using a rotary evaporator. The brown oily residue was finally dried under vacuum until constant weight was reached. The raw product was characterized by four spots on a thin layer chromatogram (eluent: cyclohexane:ethyl acetate = 15:1, staining with KMnO₄) with the following retention factors: Rᶠ₁ = 0.34, Rᶠ₂ = 0.60, Rᶠ₃ = 0.64, Rᶠ₄ = 0.94.

Crude yield: 3.24 g (162% in relation to mass of natural rubber; 65% in relation to full conversion towards ethyl 6-methylhepta-2,6-dienoate (C₁₀H₁₆O₂; MW: 168.24)).

Purification was done by column chromatography (eluent: cyclohexane:ethyl acetate = 15:1; 600 mL silica) and gave

- a first fraction of 78.5 mg of a transparent oil (Rᶠ = 0.94),
- a second fraction of 1.85 g (yield: 37% in relation to full conversion towards ethyl 6-methylhepta-2,6-dienoate,) of a yellowish oil (Rᶠ = 0.64-0.60). ¹H-NMR revealed 1 with m = 3.2 and E/Z = 92/8. The theoretical yield for 1ₘ=3.2 is 2.70 g, accordingly 69 m% was found in this fraction.
- a third fraction of 268 mg (Rᶠ = 0.34) of a yellowish oil which slowly solidifies, identified as diethyl but-2-enedioate

Degradation of natural rubber

The procedure described above was followed using 2.00 g natural rubber, 30 mL toluene, 15 mL ethyl prop-2-enoate and 97.7 mg M51.

Crude yield: 3.61 (180% in relation to mass of natural rubber; 73% to full conversion towards ethyl 6-methylhepta-2,6-dienoate). A ¹H-NMR spectrum of the crude reaction mixture is shown in Fig. S1.

After purification as described above the following fractions were obtained:

- first fraction of 59.5 mg of a transparent oil (Rᶠ = 0.94)
- second fraction of 2.05 g (yield: 41% in relation to full conversion towards ethyl 6-methylhepta-2,6-dienoate) of a yellowish oil (Rᶠ = 0.64-0.60). ¹H-NMR revealed 1 with m = 3.0 and E/Z = 92/8. The theoretical yield for 1ₘ=3.0 is 2.74 g, accordingly 75 m% was found in this fraction.
- third fraction of 535 mg (Rᶠ = 0.34) of a yellowish oil which slowly solidifies, identified as diethyl but-2-enedioate

Influence of reaction conditions in particular catalyst loading

Reactions were performed as described above with changes according to Table S1. Every try was done with 2 g natural rubber (or natural rubber gloves). The crude yield is the weight of the residue after removing volatiles. The crude products were investigated using ¹H-NMR spectroscopy. The integral for the peak at 5.83 ppm was set to 1 and the integral for the peak at 5.24-5.05 ppm was read out as factor m (i.e. repeating units of oligo(isoprene), see drawing above. Further, the peak at
6.83 ppm was integrated and its integral was divided by 2 giving the ratio of diethyl fumarate to equivalents of 1 with the m as determined above. This value was used to calculate a percental ratio of 1 : diethyl fumarate given in Table S1 last column. Further, mol-percent were converted to mass-percent and with that the weight of 1 (with given m) within the crude product was calculated and is given in the next to last column.

Table S1 Degradation of 2 g natural rubber under different reaction conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>M51 [mol%]</th>
<th>Time [h]</th>
<th>m a</th>
<th>Crude Yield [g] b</th>
<th>Crude Yield without Fumarate [g] c</th>
<th>1 : Fumarate [%] d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>16</td>
<td>1.6</td>
<td>4.36</td>
<td>3.81</td>
<td>81 : 19</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>16</td>
<td>14.5*</td>
<td>1.51</td>
<td>1.39</td>
<td>63 : 37</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>16</td>
<td>3.0**</td>
<td>3.61</td>
<td>3.19</td>
<td>78 : 22</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>5 h</td>
<td>5.3</td>
<td>2.12</td>
<td>1.70</td>
<td>57 : 43</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>3 + 5 e</td>
<td>3.7</td>
<td>2.94</td>
<td>2.71</td>
<td>83 : 17</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>32</td>
<td>3.1</td>
<td>3.66</td>
<td>2.81</td>
<td>60 : 40</td>
</tr>
<tr>
<td>7 f</td>
<td>0.5</td>
<td>16</td>
<td>2</td>
<td>n.d.</td>
<td>n.d.</td>
<td>79 : 21</td>
</tr>
<tr>
<td>8 g</td>
<td>0.5</td>
<td>16</td>
<td>3.2</td>
<td>3.24</td>
<td>2.59</td>
<td>64 : 46</td>
</tr>
<tr>
<td>9 g</td>
<td>2</td>
<td>16</td>
<td>0.8</td>
<td>3.54</td>
<td>2.27</td>
<td>58 : 42</td>
</tr>
<tr>
<td>10 h</td>
<td>1</td>
<td>16</td>
<td>2.8</td>
<td>5.62</td>
<td>2.66</td>
<td>31 : 69</td>
</tr>
<tr>
<td>11 h</td>
<td>0.5</td>
<td>16</td>
<td>3.4</td>
<td>2.96</td>
<td>2.26</td>
<td>59 : 41</td>
</tr>
<tr>
<td>12 i</td>
<td>0.5</td>
<td>16</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

a m is the average number of isoprene repeating groups according to the drawing above; b crude yield describes the weight of the residue after removal of the volatiles; c calculated share of 1 with a given m in the crude product; d molar ratio of 1 to fumarate according to 1H-NMR; e the reaction mixture was first reacted at 80°C without ethyl acrylate for 3 h, afterwards ethyl acrylate was added and the reaction was reacted at 80°C for further 5 h; f the crude reaction product from entry 4 was used as starting material; g in this case natural rubber gloves (i.e. vulcanized NR) were used instead of natural rubber; h methyl acrylate was used instead of ethyl acrylate; i reaction performed without acrylate, the residue was analyzed by GPC (THF): M_n = 48000 g/mol, M_w = 90000 g/mol; ** GPC (THF): M_n = 1800 g/mol, M_w = 4000 g/mol; * GPC (THF): M_w < 500 g/mol

Characterization of representative fractions

Fraction 1 (R=0.94) was not comprehensively characterized but contained mainly species bearing oligoisoprene units as evident from NMR-spectroscopic investigations (Figs S2-S3). GC-MS investigations confirmed the presence of species with m=0 until m=4 (Figs S4-S8). Spectra in accordance to literature. 1

1H-NMR (δ, CDCl3, 300 MHz): 6.98 (dt, 0.97 H, -CH2=CH-COOEt), 6.19 (m, 0.03 H, -CH2=CH-COOEt), 5.83 (d, 3Htrans = 15.6 Hz, 1H, -CH2=CH-COOEt – submersed -CH2=CH-COOEt); 5.24-5.05 (m, 1.59 H, -C(CH3)=CH2); 4.70, 4.66 (s, 2H, -C(CH3)=CH2), 4.17 (q, 2H, COOCH2CH3); 2.33-1.96 (m, 10.8 H, -CH2CH2-); 1.71, 1.67 (2x s, 8H, -C(CH3)=CH2, -C(CH3)=CH2); 1.27 (t, 3H, COOCH2CH3).

13C[1H]-NMR (δ, CDCl3, 125 MHz): 166.7 (1C, -COOEt); 148.8 (1C, -CH2=CH-COOEt), 145.9, 145.7 (q, -C(CH3)=CH2), 135.3, 135.1, 133.8 (-C(CH3)=CH2), 126.3, 126.1, 125.4, 125.2, 125.0 (-C(CH3)=CH2), 121.6 (2C, -CH2=CH-COOEt), 110.1, 109.9 (-C(CH3)=CH2), 60.3 (COOCH2CH3), 38.2, 38.0 (-CH2-C(CH3)=CH2), 32.3, 32.2, 32.1, 30.9, 30.8, 30.5 (-CH2CH2-C(CH3)=CH2), 26.5, 26.3, 26.2 (-CH2-C(CH3)=CH2), 23.5, 23.35, 23.29, 22.61, 22.57 (-C(CH3)=CH2, -C(CH3)=CH2), 14.4 (COOCH2CH3).

Characterization of representative fractions

Fraction 2 (R=0.60, 1) represents the main fraction and contains oligoenoates in this case with on average 1.6 units m (according to the drawing) and an E/Z ratio of the 2-enoatic double bond of about 97:3 as evident from NMR-spectroscopic investigations (Figs S9-S13).
Fraction 3 (R_f=0.34) was identified as the product from homo-dimerization of ethyl prop-2-enoate, namely diethyl but-2-enedioate (diethylfumerat), see Figs S14-S15).

Fig. S1. 1H-NMR of the crude natural rubber degradation product mixture.

Fig. S2. 1H-NMR of fraction 1 from the natural rubber degradation experiment
Fig. S3. 13C$^{[1}H]$-NMR of fraction 1 from the natural rubber degradation experiment

Fig. S4. Gas chromatogram of fraction 2
Fig. S5. Mass spectrum of the peak at 4.545 min from the gas chromatogram of fraction 2

Fig. S6. Mass spectrum of the peak at 5.973 min from the gas chromatogram of fraction 2
Fig. S7. Mass spectrum of the peak at 7.081 min from the gas chromatogram of *fraction 2*

Fig. S8. Mass spectrum of the peak at 4.545 min from the gas chromatogram of *fraction 2*
Fig. S9. 1H-NMR of fraction 2 from the natural rubber degradation experiment

Fig. S10. 13C(1H)-NMR of fraction 2 from the natural rubber degradation experiment
Fig. S11. APT-13C[1H]--NMR of fraction 2 from the natural rubber degradation experiment

Fig. S12. DEPT-45 of fraction 2 from the natural rubber degradation experiment
Fig. S13. \(^1\)H-\(^{13}\)C-HSQC of fraction 2 from the natural rubber degradation experiment

Fig. S14. \(^1\)H-NMR of fraction 3 from the natural rubber degradation experiment
Reaction of the oligoenoates 1 with dicyclopentadiene

A mixture of 1 (m= 3.4; 499.3 mg; 1.25 mmol) and DCPD (1002 mg; 7.6 mmol) was reacted at 200°C for 1 h in a Monowave reactor (Anton Paar). Upon cooling to room temperature and removal of volatiles, a brown oil was obtained. Excess DCPD was removed via column chromatography (200 mL silica; eluent: cyclohexane) sampling the spot on the TLC at Rf = 0.95 (cyclohexane). Afterwards the eluent was changed to ethyl acetate and 2 was eluted (Rf of 2 = 0.41-0.35 (cyclohexane : ethyl acetate = 20 : 1)). Yield: 628.4 mg containing 3-7 % unreacted 1

The content of tetracyclo[6.2.1.13,6.02,7.02,7]dodec-9-ene-4-carboxylate derivatives (o = 1) or potentially even higher oligomers was estimated from the 13C NMR spectrum (peaks at 136.4, 136.3, 135.7, 135.6 ppm are characteristic for o = 1, 2, etc.) approx. 35 % (i. e. o =0.35).

1H-NMR (δ, CDCl3, 300 MHz): 6.27-5.89 (m, 2H, protons from cyclic double bonds), 5.12 (bs, 3.90H, -C(CH3)=CH-), 4.70, 4.68 (s, 2.2H, -C(CH3)=CH2), 4.23-3.99 (m, 2.4H, COOCH2CH3); 3.16-0.70 (m, 51H, -CH2CH2-, protons of cyclic aliphatic structures, -C(CH3)=CH-, -C(CH3)=CH3, COOCH2CH3).

13C{1H}-NMR (δ, CDCl3, 75 MHz): 176.3-174.4 (-COOEt); 145.9-145.8 (q, -C(CH3)=CH2), 138.5-133.7 (-C(CH3)=CH-, -CH=CH-), 125.2-124.8 (-C(CH3)=CH-), 109.9 (-C(CH3)=CH2), 60.4-60.2 (COOCH2CH3), 56.6, 56.2, 53.5, 53.3, 51.6, 50.5, 49.3, 49.2, 47.6-45.2, 43.9, 43.4, 42.5 (aliphatic cyclic carbons), 38.2 (-CH2-C(CH3)=CH2), 34.7, 34.2, 33.23, 33.20, 32.9, 31.1, 20.9, 30.5, 29.5 (aliphatic cyclic carbons and -CH2CH2-C(CH3)=CH-), 26.5 (-CH2-C(CH3)=CH-), 23.5, 22.6 (-C(CH3)=CH-, -C(CH3)=CH2), 14.4 (COOCH2CH3).

Fig. S15. 13C{1H}-NMR of fraction 3 from the natural rubber degradation experiment
Fig. S16. 1H-NMR of 2

Fig. S17. 13C(1H)-NMR of 2; inset: overlay of the 13C(1H)- and the APT-spectrum of 2 and integration
Fig. S18. TGA of 2

Polymerization of 2

Monomers 2 (915 mg; m = 3.4, o = 0.35; 2.12 mmol) and a solution of M2 (0.0024 mmol, 2 : M2 = 870 : 1) in dichloromethane (100 µL) were combined in a Schlenk-tube and heated until 80°C in a N2-stream. Afterwards the Schlenk-tube was closed and the reaction mixture was stirred for 2 h at 80°C. After cooling the reaction mixture to room temperature, 100 µL of ethyl vinyl ether were added and the reaction mixture was stirred at room temperature for 30 min. The reaction mixture was dropped into ice cold methanol (15 mL) under vigorous stirring. After 15 min without stirring, the supernatant almost color-less methanol-phase was removed and the residual brown liquid phase was dried under vacuum. Yield: 900 mg (98 %). GPC (THF): $M_n = 5500$; $M_w = 40000$; PDI = 7.3

Similarly a polymerization with a monomer to initiator of 2 : M2 = 260 : 1 was conducted, yielding 96% of poly2. GPC (THF): $M_n = 4500$; $M_w = 20000$; PDI = 4.4

A solution polymerization of 2 (dissolved in 10 mL dichloromethane) with a monomer to initiator of 2 : M31 = 230 : 1 was conducted, yielding 94% of poly2. GPC (THF): $M_n = 5000$; $M_w = 11000$; PDI = 2
1H-NMR (δ, CDCl$_3$, 300 MHz): 5.56-5.21 (m, 2H, protons from ring opened double bonds), 5.12 (bs, 3.3H, -C(CH$_3$)=CH-); 4.68, 4.65 (s, 1.6H, -C(CH$_3$)=CH$_2$), 4.26-3.92 (m, 1.9H, COOCH$_2$CH$_3$); 3.25-0.70 (m, 44H, -CH$_2$CH$_2$-, protons of cyclic aliphatic structures, -C(CH$_3$)=CH-, -C(CH$_3$)=CH$_2$, COOCH$_2$CH$_3$).

Fig. S19. 1H-NMR of poly2

Fig. S20. DSC of poly2 (from poly2 prepared with 2 : M2 = 260 : 1)
Fig. S21. TGA of poly2

Fig. S22. GPC of poly2; prepared with the following monomer to initiator ratios, left: $2 : \text{M2} = 870 : 1$; middle: $2 : \text{M2} = 260 : 1$; right: $2 : \text{M31} = 260 : 1$.

References