Supporting Information

Functionalized Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs) via Inverse Vulcanization of Elemental Sulfur and Vinylanilines

Yueyan Zhang, a Tristan S. Kleine, a Kyle J. Carothers, a David D. Phan, b Richard S. Glass, a Michael, E. Mackay, b,c Kookheon Char d and Jeffrey Pyun a,d

a. Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States

b. Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States

c. Department of Materials Science and Engineering, University of Delaware, 201 Dupont Hall, Newark, Delaware, 19716, United States

d. School of Chemical and Biological Engineering, Program of Chemical Convergence of Energy and Environment, The National Creative Research Initiative Center for Intelligent Hybrids, Seoul National University, Seoul 151-744, Korea
I) Materials and Instrumentation

Sulfur (precipitated, 99.5%-100.5%, Sigma-Aldrich), chloroform-d (CDCl$_3$, 0.01 % v/v TMS Cambridge Isotope Laboratories), methyl sulfoxide-d$_6$ (Acros Organics, 99.9% atom%D), 4-vinylaniline (97%, TCL Chemicals), acryloyl chloride (97%, Sigma-Aldrich), phenyl isocyanate (98%, Sigma-Aldrich), potassium carbonate (99%, Sigma-Aldrich), Those chemicals were used as received. Styrene (99.5%, stabilized, Acros) was purified through an alumina column before use.

1H and 13C nuclear magnetic resonance (NMR) spectra were obtained using a Bruker DRX 500 MHz or a BrukerAvance III 400 MHz spectrometer. Chemical shifts are referenced to residual CHCl$_3$ (δ 7.260 ppm) in CDCl$_3$ and DMSO (δ 2.500 ppm) in DMSO for 1H NMR and residual CHCl$_3$ (δ 77.0 ppm) for 13C NMR. Size exclusion chromatography (SEC) was performed in a tetrahydrofuran (THF) mobile phase with a Waters 1515 isocratic pump running three 5-µm PLgel columns (Polymer Labs, pore size 104, 103 and 102 Å) at a flow rate of 1 mL/min with a Waters 2414 differential refractometer and a Waters 2487 dual-wavelength UV-vis spectrometer. Molar masses were calculated using the Empower software (Waters), calibrated against low polydispersity linear polystyrene standards. Rheological analysis was performed on a TA Instruments ARES-G2 and analyzed with the TRIOS software suite.

II) Experimental procedures

1. Poly(S-r-VA) (70 wt% sulfur)
To a 4 mL glass vial equipped with a magnetic stir bar was added elemental sulfur (700 mg, 2.73 mmol) and heated at 130 °C until a yellow liquid was formed and 4-vinylaniline (0.30 mL, 2.52 mmol) was added to liquid sulfur dropwise. The reaction mixture was stirred at 130 °C for 20 min yielding a red glass. The crude product was purified by column chromatography. Hexanes was used to elute the residual sulfur and the polymer was eluted with THF (0.85 g, yield 85%, conversion of vinylaniline: >99% by NMR, conversion of S$_8$: 78% by flash chromatography).

2. Poly(S-r-VA) (50 wt% sulfur)
To a 4 mL glass vial equipped with a magnetic stir bar was added elemental sulfur (500 mg, 1.95 mmol) and heated at 130 °C until a yellow liquid was formed and 4-vinylaniline (0.49 mL, 4.20 mmol) was added to liquid sulfur dropwise. The reaction mixture was stirred at 130 °C for 30 min yielding a red glass. The crude product was purified by column chromatography (0.91 g, yield 91%, conversion of vinylaniline: >99% by NMR, conversion of S$_8$: 82% by flash chromatography).

3. Poly(S-r-VPAA)
Poly(S-r-VA) (70 wt% sulfur, 3.4 g, 8.57 mmol of VA) was dissolved in THF (50 mL) and added the solution of K$_2$CO$_3$ (2.8 g, 20.16 mmol, 2.4 eq) in H$_2$O (12 mL) and acryloyl chloride (1.63 mL, 20.16 mmol,
2.4 eq). The reaction mixture was cooled to 0 ºC in ice bath and stirred for 2 h under Ar. The crude product was concentrated under vacuum and extracted with H₂O (30 mL×4) and methanol (30 mL×2) and dried under vacuum overnight (2.8 g, yield 72%).

4. Poly(S-r-PVPU)
Poly(S-r-VA) (50 wt% S, 200 mg, 0.84 mmol of VA) was dissolved in THF (20 mL) and phenyl isocyanate (0.09 mL, 0.84 mmol, 1 eq) was added. The reaction mixture was stirred at room temperature overnight. The crude product was concentrated under vacuum and extracted with methanol (15 mL×3) and dried under vacuum (260 mg, yield 87%).

5. Preparation of poly(S-r-VPAA) copolymer disc for thermoanalysis
Poly(S-r-VPAA) (400 mg) copolymer was loaded to a diameter = 10 mm die and pressed at 100 ºC in the Hydraulic Press for 30 s to make a disc with 10 mm diameter and 2 mm thickness.

6. Time sweeping rheological analysis of poly(S-r-VPAA)
The rheological analysis was performed on a TA Instruments ARES-G2. The materials were tested on two stainless steel parallel plates with 9.5 mm diameters. Amplitude sweeps, from 0.1% to 100% at 100 rad/s, were performed to determine the limits of the linear viscoelastic (LVE) region. Following this, a 24-hour time sweep, held isothermally at 100 ºC, was performed at a strain within the LVE region, in this case, 3% strain, subject to a 6.28 rad/s angular frequency. All data was managed and analyzed with the TRIOS software suite.

III) Results and Discussion

1. IR analysis of poly(S-r-VA) and poly(S-r-VPAA)

![Figure S1. IR spectra for (i) poly(S-r-VA) and (ii) poly(S-r-VPAA)](image-url)
2. NMR analysis of poly(S-r-VA) before and after addition of D_2O

![NMR spectra](image)

Figure S2. 1H NMR of poly(S-r-VA) in DMSO (bottom) and DMSO-D_2O (2%v/v) (top)

Fig. S2 shows the NMR spectra of poly(Sulfur-random-Vinylaniline) (poly(S-r-Sty) (70 wt% sulfur) in DMSO-_d_6 before and after the addition of 2 % (v/v) D_2O. The broad peak at 5.3 ppm, represents the -NH_2 group, disappeared after the addition of D_2O due to proton exchange.

3. Stability of poly(S-r-VA) after heat treatment

To test the stability of poly(S-r-VA), the polymer was heated at 120 °C in dichlorobenzene and liquid sulfur for 24 h. The SEC analysis for the products showed similar molecular weight compared before and after heat treatment (Fig. S2).

![SEC data](image)

Figure S3. SEC data for (i) poly(S-r-VA) heated at 120 °C for 24 h in DCB solution (Mn=1043 g/mol, Mw/Mn=1.4) (ii) poly(S-r-VA) (50 wt% S) and S_8 heated at 120 °C for 24 h (Mn=1058 g/mol, Mw/Mn=1.5)

4. SEC analysis of poly(S-r-VA) before and after amidation
The product of amidation of poly(S-\(r\)-VA) with benzyl chloride was analyzed with SEC. The product after amidation poly(Sulfur-\(r\)-random-vinylphenylacryloyl chloride) (poly(S-\(r\)-VPAA) exhibited similar molecular weight (1348 g/mol, Mw/Mn=1.3) with poly(S-\(r\)-VA) (Mn=1038 g/mol, Mw/Mn=1.4). This result suggested the S-S backbone was preserved in the amidation process.

5. NMR analysis of poly(S-\(r\)-PVPU)

The product for poly(S-\(r\)-VA) reacted with isocyanate poly(S-\(r\)-1-phenyl-3-(4-vinylphenyl)urea) (poly(S-\(r\)-PVPU) was characterized by NMR spectra. The bread peaks at 3.3-3.8 ppm represent -S-CH\(_2\)- and 4.0-4.5 represent -S-CH-. The broad peak at 5.0-5.2 ppm, represents the -NH\(_2\) groups in poly(S-\(r\)-VA), didn’t show up in the spectrum of poly(S-\(r\)-PVPU) and a new peak at 8.6-8.7 ppm in the spectrum of poly(S-\(r\)-PVPU) represents the proton in -NH-CO- group.
6. SEC analysis of poly(S-\(r\)-PVPU)

The molecular weight of the product for poly(S-\(r\)-VA) reacted with isocyanate poly(S-\(r\)-1-phenyl-3-(4-vinylphenyl)urea) (poly(S-\(r\)-PVPU) was characterized SEC (Fig. S5) and exhibited similar molecular weight with poly(S-\(r\)-VA).

![SEC data](image)

Figure S6. SEC data for (i) poly(S-\(r\)-PVPU) (Mn=1198 g/mol, Mw/Mn=1.4) (ii) poly(S-\(r\)-VA) (Mn-1349 g/mol, Mw/Mn=1.4)