Supporting Information

Salen complexes of Zirconium and Hafnium: Synthesis, structural characterization and polymerization studies

Mrinmay Mandal,‡a Venkatachalam Ramkumarb and Debasish Chakrabortyb

aDepartment of Chemistry, Indian Institute of Technology Patna, Bihta 801103, Bihar, India. Fax: +044-22574202; Tel: +044-22574223; E-mail: dchakraborty@iitm.ac.in, debashis.iitp@gmail.com.
bDepartment of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, Tamil Nadu, India.

‡Current address: School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, United States.
Fig. S1 1H NMR (400 MHz, CDCl$_3$) of Compound 1
Fig. S2 13C NMR (100 MHz, CDCl$_3$) of Compound 1
Fig. S3 ESI-Mass spectrum of Compound 1
Fig. S4 1H NMR (400 MHz, CDCl$_3$) of Compound 2

Fig. S5 13C NMR (100 MHz, CDCl$_3$) of Compound 2
Fig. S6 ESI-Mass spectrum of Compound 2
Fig. S7 1H NMR (400 MHz, CDCl$_3$) of Compound 3
Fig. S8 13C NMR (100 MHz, CDCl$_3$) of Compound 3
Fig. S9 ESI-Mass spectrum of Compound 3
Fig. S10 1H NMR (400 MHz, CDCl$_3$) of Compound 4
Fig. S11 13C NMR (100 MHz, CDCl$_3$) of Compound 4
Fig. S12 ESI-Mass spectrum of Compound 4
Fig. S13 1H NMR (400 MHz, CDCl$_3$) of Compound 5
Fig. S14 13C NMR (100 MHz, CDCl$_3$) of Compound 5
Fig. S15 ESI-Mass spectrum of Compound 5
Fig. S16 1H NMR (400 MHz, CDCl$_3$) of Compound 6
Fig. S17 13C NMR (100 MHz, CDCl$_3$) of Compound 6
Fig. S18 ESI-Mass spectrum of Compound 6
Fig. S19 1H NMR (400 MHz, CDCl$_3$) of Compound 7
Fig. S20 13C NMR (100 MHz, CDCl$_3$) of Compound 7
Fig. S21 ESI-Mass Spectrum of Compound 7
Fig. S22 1H NMR (400 MHz, CDCl$_3$) of Compound 8
Fig. S23 13C NMR (100 MHz, CDCl$_3$) of Compound 8
Fig. S24 ESI-Mass Spectrum of Compound 8
Fig. S25 1H NMR (400 MHz, CDCl$_3$) of Compound 9
Fig. S26 13C NMR (100 MHz, CDCl$_3$) of Compound 9
Fig. S27 ESI-Mass Spectrum of Compound 9
Fig. S28 Molecular structure of 2; thermal ellipsoids were drawn at 30 % probability level. Selected bond lengths (Å) and bond angles (°): Zr(1)-Zr(2) 3.496(2), Zr(1)-N(1) 2.479(15), Zr(2)-N(2) 2.472(13), Zr(1)-O(1) 2.062(9), Zr(1)-O(5) 2.143(9), Zr(2)-O(2) 2.050(8), Zr(2)-O(5) 2.161(8), O(4)-Zr(2)-Zr(1) 102.3(3), O(3)-Zr(2)-Zr(1) 127.8(3), O(2)-Zr(2)-Zr(1) 126.8(3), O(5)-Zr(2)-Zr(1) 35.5(2), N(2)-Zr(2)-Zr(1) 82.8(3), N(1)-Zr(1)-Zr(2) 83.7(3), O(6)-Zr(1)-Zr(2) 101.2(3), O(7)-Zr(1)-Zr(2) 126.7(3).

Fig. S29 Molecular structure of 3; thermal ellipsoids were drawn at 30 % probability level. Selected bond lengths (Å) and bond angles (°): N(1)-Zr(1) 2.4374(15), N(2)-Zr(1) 2.3928(14),
N(3)-Zr(1) 2.3960(14), N(4)-Zr(1) 2.4170(14), O(1)-Zr(1) 2.1011(12), O(2)-Zr(1) 2.1071(12), O(3)-Zr(1) 2.1082(12), O(4)-Zr(1) 2.0795(12), O(4)-Zr(1)-O(1) 95.61(5), O(4)-Zr(1)-O(3) 143.27(5), N(2)-Zr(1)-N(3) 129.73(5), N(3)-Zr(1)-N(4) 69.24(5).

Fig. S30 Coordination polyhedron of a distorted square antiprism geometry.

Fig. S31 Representative GPC traces for the polymerization of (a) rac-LA (entry 2, Table 1); (b) L-LA (entry 11, Table 1) and (c) ε-CL (entry 14, Table 1) using 2.
Fig. S32 Plot of M_n and M_w/M_n vs. % conversion for L-LA, rac-LA and ε-CL polymerization using 2 at 140 °C (L-LA and rac-LA) and 80 °C (ε-CL).

Fig. S33 Plot of M_n and M_w/M_n vs. $[M]/[C]$ for rac-LA polymerization using 2, 3, 6 and 9 in the presence of benzyl alcohol at 140 °C.
Fig. S34 Homonuclear decoupled 1H NMR spectra of PLA from rac-LA using 2 in CDCl$_3$.

Fig. S35 1H NMR spectrum of the crude product obtained from a reaction between rac-LA and 2 in 15: 1 ratio.
Fig. S36 MALDI-TOF of the crude product obtained from a reaction between rac-LA and 6 in 10:1 ratio.

Fig. S37 1H NMR spectrum of the crude product obtained from a reaction between rac-LA and 6 in 10:1 ratio.
Fig. S38 MALDI-TOF of the crude product obtained from a reaction between \textit{rac}-LA and 2 in the presence of BnOH in 15: 1: 2 ratio.

Fig. S39 1H NMR spectrum of the crude product obtained from a reaction between \textit{rac}-LA and 2 in the presence of BnOH in ratio 15: 1: 2.
Fig. S40 Representative GPC traces for the copolymerization of cyclohexene oxide and CO$_2$ using 3 (entry 6, Table 2) and 4 (entry 7, Table 2).

Fig. S41 MALDI-TOF mass spectrum of PCHC sample produced by 2 at 50 °C and 35 bar CO$_2$ pressure from CHO and CO$_2$ using TBAB as cocatalyst.
Fig. S42 13C NMR spectrum of poly(cyclohexene carbonate) in the carbonate region produced from cyclohexene oxide and CO$_2$.

Fig. S43 Representative TGA trace and derivative plot of PCHC produced by 2 (Table 2, entry 2).
Fig. S44 Representative DSC trace of PCHC produced by 2, 2nd heat cycle (Table 2, entry 2).

Fig. S45 13C NMR spectrum of an aliquot from the reaction mixture of SO/CO$_2$ in CDCl$_3$.
Fig. S46 13C NMR spectrum of an aliquot from the reaction mixture of PO/CO$_2$ in CDCl$_3$.

Fig. S47 Representative GPC traces for the polymerization of (a) CHO (entry 3, Table 4); (b) PO (entry 12, Table 4) and (c) SO (entry 21, Table 4) using 3.
Fig. S48 1H NMR (500 MHz, CDCl$_3$) of the crude product obtained from a reaction between CHO and 2 in 1000: 1 ratio at 80 °C.

![NMR spectrum](image1.png)

Fig. S49 1H NMR (500 MHz, CDCl$_3$) of the crude product obtained from a reaction between PO and 2 in 1000: 1 ratio at 40 °C.

![NMR spectrum](image2.png)
Fig. S50 1H NMR (500 MHz, CDCl$_3$) of the crude product obtained from a reaction between SO and 2 in 1000:1 ratio at 100 °C.

![H NMR spectrum](image)

Fig. S51 13C NMR (125 MHz, CDCl$_3$) Spectrum of the representative PCHO obtained from a reaction between CHO and 2 in 1000:1 ratio at 80 °C.

![C NMR spectrum](image)
Fig. S52 13C NMR (125 MHz, CDCl$_3$) Spectrum of the representative PPO obtained from a reaction between PO and 2 in 1000: 1 ratio at 40 °C.

Scheme S1 Polymerization proceeds through the coordination-insertion mechanism for rac-LA.

Table S1 Crystal data for the structures of 1, 2, 3, 5, 6 and 9
Table S2 Polymerization data based on changing ratios in case of rac-LA using 1, 2, 3, 5, 6 and 9 in the presence of benzyl alcohol at 140 °C.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Initiator</th>
<th>[M]/[C]/[BnOH] ratio</th>
<th>′Time/min</th>
<th>Yield (%)</th>
<th>(\bar{M}_n^{obs}) kgmol(^{-1})</th>
<th>(\bar{M}_n^{theo}) kgmol(^{-1})</th>
<th>(M_w/M_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>100: 1: 2</td>
<td>28</td>
<td>95</td>
<td>9.52</td>
<td>6.95</td>
<td>1.04</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>200: 1: 2</td>
<td>60</td>
<td>94</td>
<td>17.0</td>
<td>13.6</td>
<td>1.07</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>400: 1: 2</td>
<td>101</td>
<td>99</td>
<td>31.4</td>
<td>28.6</td>
<td>1.09</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>600: 1: 2</td>
<td>149</td>
<td>98</td>
<td>46.0</td>
<td>42.5</td>
<td>1.10</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>800: 1: 2</td>
<td>202</td>
<td>99</td>
<td>61.1</td>
<td>57.2</td>
<td>1.12</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1000: 1: 2</td>
<td>265</td>
<td>97</td>
<td>75.5</td>
<td>70.0</td>
<td>1.13</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>100: 1: 2</td>
<td>24</td>
<td>98</td>
<td>11.1</td>
<td>7.17</td>
<td>1.02</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>200: 1: 2</td>
<td>51</td>
<td>96</td>
<td>18.0</td>
<td>13.9</td>
<td>1.05</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>400: 1: 2</td>
<td>90</td>
<td>99</td>
<td>33.9</td>
<td>28.6</td>
<td>1.07</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>600: 1: 2</td>
<td>135</td>
<td>99</td>
<td>49.4</td>
<td>42.9</td>
<td>1.05</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>800: 1: 2</td>
<td>188</td>
<td>97</td>
<td>63.0</td>
<td>56.0</td>
<td>1.09</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1000: 1: 2</td>
<td>248</td>
<td>96</td>
<td>77.0</td>
<td>69.3</td>
<td>1.11</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>100: 1: 2</td>
<td>39</td>
<td>95</td>
<td>7.01</td>
<td>6.95</td>
<td>1.08</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>200: 1: 2</td>
<td>85</td>
<td>94</td>
<td>14.1</td>
<td>13.6</td>
<td>1.09</td>
</tr>
</tbody>
</table>
Table S3 DSC and TGA measurements for the different copolymers obtained in Table 2.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Initiator</th>
<th>Copolymers</th>
<th>T_g^a (°C)</th>
<th>T_{d5}^b (°C)</th>
<th>T_{d50}^b (°C)</th>
<th>T_{d95}^b (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>PCHC</td>
<td>55</td>
<td>92</td>
<td>187</td>
<td>>900</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>PCHC</td>
<td>48</td>
<td>85</td>
<td>179</td>
<td>>900</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>PCHC</td>
<td>52</td>
<td>90</td>
<td>185</td>
<td>>900</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>PCHC</td>
<td>50</td>
<td>88</td>
<td>182</td>
<td>>900</td>
</tr>
</tbody>
</table>

aTime of polymerization measured by quenching the polymerization reaction when all monomer was found consumed.

bMeasured by GPC at 27 °C in THF relative to polystyrene standards after applying a multiplication factor of 0.58 (for rac-LA). cM_n (theoretical) at actual conversion = [Conversion × $[M]_0/[C]_0$ × mol. Wt. (monomer)] + mol. Wt. (BnOH).