Supporting Information for

Reactive Block Copolymers for Patterned Surface Immobilization with Sub-30 nm Spacing

Hatice Turgut, Nico Dingenouts, Vanessa Trouillet, Peter Krolla-Sidenstein, Hartmut Gliemann, Guillaume Delaittre*

Index

Additional schemes .. S2
Characterization of M1–3 and BCP 1–4 .. S3
Additional AFM images .. S8
Photocrosslinking ... S9
Synthesis and characterization of the alkyne-functionalized water-soluble polymer S10
References .. S11
Additional schemes

Scheme S1. Synthetic route for MI1 and BCP1.

Scheme S2. Synthetic route for MI2 and BCP2.

Scheme S3. Synthetic route for MI3 and BCP3.
Characterization of M1–3 and BCP 1–4

Figure S1. 1H NMR spectra of samples taken during the synthesis of M12 at t_0 (top) and t_{end} (bottom), with indication of integrals used for conversion and comonomer composition calculations.
Figure S2. (A) Chemical route for the conversion of 4-chloromethylphenyl groups into 4-azidomethylphenyl groups to obtain BCP4 from BCP3. (B) Selected region of the 1H NMR spectra of BCP 3 (top) and BCP4 (bottom) showing the shift of the methylene protons after chloride-to-azide transformation.

Figure S3. SEC traces of PI chain extension attempt from a PS-SG1: (A) with a target of 30\% conversion at [isoprene]/[PS-SG1] = 1025; (B) with a target of 20\% conversion at [isoprene]/[PS-SG1] = 1335. ($M_{n,SEC}$ (PS-SG1) = 23000 g mol$^{-1}$).
Figure S4. (A) Representative repeating unit distribution for a PI block synthesized in the current study. (B) 1H NMR peak assignments for the ethylenic protons present in the PI block of PS-b-PI derivatives.
Figure S5. 1H NMR spectrum of BCP1, BCP2, BCP3, and BCP4 showing similar integral values for styrene and isoprene repeating units.
Example of volume fraction calculation for BCP3: According to 1H NMR data, for 1u styrene, there exist $\frac{1.25}{0.8} = 1.5625$u isoprene and 0.04 CMS (u is an arbitrary number)

$$f(\text{PI}) = \frac{68.12 \times 1.5625}{104.15 + (0.04 \times 152.62)} + \frac{68.12 \times 1.5625}{0.913} = 0.53$$

Figure S6. 19F NMR spectrum of BCP2.

Table S1. Macromolecular characteristics of the macroinitiators and block copolymers reported in the current study.

<table>
<thead>
<tr>
<th>Macroinitiators</th>
<th>Block copolymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>$M_{n,SEC}$</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
</tr>
<tr>
<td>MI1</td>
<td>22.3</td>
</tr>
<tr>
<td>MI2</td>
<td>25.3</td>
</tr>
<tr>
<td>MI3</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional AFM images

Figure S7. (Top row) AFM phase images of (A) a 33 nm-thick film of BCP1 spin-coated from a 0.3 wt% solution in toluene; (B) 29 nm thick film of BCP1 spin-coated from a 0.3 wt% solution in toluene, and (C) 7 nm thick film of BCP1 spin-coated from a 0.2 wt% solution in toluene. (Bottom row) Schematic representations of (D) PI wetting the surface in the case of thick films demonstrated on images A-B (E) BCP perpendicular orientation on Si wafer in the case of ultrathin films demonstrated on image C. Scale bar 200 nm.

Figure S8. AFM height images of (A) a BCP4 film, (B) the CuAAC sample, and (C) the control sample. Scale bar 300 nm.
Photocrosslinking

The thin films produced in the current study were initially thought to be employed for functionalization in aqueous media. However, the CuAAC investigation revealed that surface morphological alterations could occur in water. Consequently, stabilization of the nanostructures seemed to be required. Covalent crosslinking is typically applied to permanently fix block copolymer films.1-3 Particularly, systems bearing azides are amenable to crosslinking upon light or thermal treatment.4-6 Hence, a BCP4-coated Si wafer was irradiated with UV light for 15 min (see Experimental Section for details). Interestingly, if the structures are crosslinked, they must be stable not only in aqueous medium but also in any organic solvents. After irradiation, the film was indeed subjected to thorough and multiple washings with acetone, DCM, and toluene, before a final incubation in DMSO for 30 min. The AFM phase and height images of this sample are depicted in Figure S9. Undoubtedly, an irradiation time of 15 min was sufficient to guarantee the integrity of the structures.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image.png}
\caption{AFM phase (left) and height (right) images of a photocrosslinked ultra-thin BCP4 film after multiple washings and incubation with organic solvents.}
\end{figure}
Synthesis and characterization of the alkyne-functionalized water-soluble polymer

Scheme S4. Synthetic route for ≡-PDMAAm.

Figure S10. 1H NMR spectra of TMS-≡-PDMAAm (top) and ≡-PDMAAm (bottom).
Figure S11. SEC traces of TMS≡-PDMAAm (black full line) and its deprotected counterpart ≡-PDMAAm (orange dotted line).

References

