Hollow $NiFe_2O_4$ microspindles derived from Ni/Fe bimetallic MOFs for highly sensitive acetone sensing at low operating temperature

Xue-Zhi Song,^a Fei-Fei Sun,^a Shu-Ting Dai,^a Xin Lin,^a Kai-Ming Sun^b and Xiao-Feng Wang^{*,b}

^aSchool of Petroleum and Chemical Engineering, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, Liaoning, China
^bSchool of Mathematics and Physics Science, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, Liaoning, China

*Corresponding author. E-mail: wangxf@dlut.edu.cn (Xiao-Feng Wang)

Fig S1. Schematic diagram of the gas sensor device.

Fig S2. Powder XRD pattern of hollow NiFe₂O₄ microspindles.

Fig S3. XPS survey spectrum of hollow NiFe₂O₄ microspindles.

Fig S4. Nitrogen adsorption–desorption isotherm (a) and pore size distribution (b) of hollow NiFe₂O₄ microspindles.

Fig S5. The dynamic response-recovery transients of the sensor to different gases at different concentrations.

Material and Morphology	Working Temperature	Acetone concentration	Response	Ref.
	(°C)	(ppm)		
ZnFe ₂ O ₄ nanosheets on ZnO hollow spheres	250	200	about 25.2	ACS Appl. Mater. Interfaces, 2015, 7, 17811
ZnO/ZnFe ₂ O ₄ hollow nanocages	290	200	about 35	Sens. Actuators B: Chem., 2017, 251 , 27
hybrid ZnFe ₂ O ₄ /ZnO hollow spheres	280	200	6.2	<i>RSC Adv.</i> , 2016, 6 , 66738
ZnO/ZnFe ₂ O ₄ triple-shelled hollow microspheres	140	200	23.5	Sens. Actuators B: Chem., 2018, 256 , 374
Concave ZnFe ₂ O ₄ Hollow Octahedral Nanocages	120	200	64.4	Inorg. Chem., 2017, 56, 13646
ZnFe ₂ O ₄ yolk–shell microspheres	200	100	near 40.5	Nanoscale, 2016, 8 , 5446
NiFe ₂ O ₄ core-in-hollow- shell nanospheres	280	200	16.0	Sens. Actuators B: Chem., 2018, 255 , 1436

 Table S1. Comparisons of acetone-sensing performances of various gas sensors.