Supplementary Information

Ni$_3$[Fe(CN)$_6$]$_2$ nanocubes boost the catalytic activity of Pt towards electrochemical hydrogen evolution

Xiao Zhang, Pei Liu, Yanfang Sun, Tianrong Zhan, Qingyun Liu, Lin Tang, Jinxue Guo* and Yongyao Xia

* State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China

College of Science and Technology, Agricultural University of Hebei, Cangzhou 061100, China

College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM(Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China

*Corresponding author. E-mail: gjx1213@126.com (J. Guo)
Fig. S1 SEM image of Ni₃[Fe(CN)₆]₂ nanocubes.

Fig. S2 The Fe 2p XPS spectrum of Ni₃[Fe(CN)₆]₂/Pt. The Fe 2pₓ/₂ peak at 708.7 eV and Fe 2p₁/₂ peak at 721.6 eV show that, most of Fe content is oxidation state of Fe (II) or Fe (III).

Fig. S3 TEM image of Ni₃[Fe(CN)₆]₂/Pt catalyst after durability experiment in H₂SO₄.
References
