Supporting information for

The Influence of NCE⁻ (E = S, Se, BH₃) Ligands on the Temperature of Spin Crossover in a Family of Iron(II) Mononuclear Complexes

Bin Fei,^a Xiu Qin Chen,^a You De Cai,^a Jing Kun Fang,^a Ming Liang Tong,^c Jiri Tucek^d and Xin Bao,^{*a,b}

- a. School of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, P. R. China.
- b. State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 510275 Guangzhou, P. R. China.
- Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics, Faculty of Science, Palacky University, Slechtitelu 11, 78371 Olomouc, Czech Republic.

Table 31. Crystal uata anu reimement ueta	ils
---	-----

able S1. Crystal data and refinement details							
	[FeL _{CI} (NCS) ₂] (1-S)	[FeL _{Cl} (NCSe) ₂] (1-Se)		[FeL _{Cl} (NCBH ₃) ₂] (1-BH₃)			
Temperature / K	123	123	298	123	298		
Spin state	HS	LS	HS	LS	HS		
Empirical formula	$C_{16}H_{16}Cl_2FeN_6S_2$	$C_{16}H_{16}CI_2FeN_6Se_2$	$C_{16}H_{16}CI_2FeN_6Se_2$	$C_{16}H_{22}B_2CI_2FeN_6$	$C_{16}H_{22}B_2CI_2FeN_6$		
Formula weight / g mol ⁻¹	483.22	577.02	577.02	446.76	446.76		
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic		
Space group	Pbcn	Pbcn	Pbcn	Pbcn	Pbcn		
a / Å b / Å	16.1129(14) 9.5488(7)	15.931(12) 9.285(7)	16.384(6) 9.657(3)	15.1811(6) 9.6182(4)	15.9885(7) 9.8134(5)		
c / Å	13.0274(9)	13.394(10)	13.344(4)	13.8167(6)	13.5420(7)		
Volume / ų	2004.4(3)	1981(2)	2111.3(12)	2016.31(15)	2124.76(18)		
Z	4	4	4	4	4		
$ ho_{ m calc}$ / mg mm ⁻³	1.601	1.935	1.815	1.472	1.397		
μ / mm ⁻¹	1.242	4.72	4.429	1.027	0.974		
F(000)	984	1128	1128	920	920		
Reflections collected	13936	28617	25370	78861	73854		
Independent reflections	2045	2471	1901	2334	2459		
R _{int}	$R_{int} = 0.0951$	<i>R_{int}</i> = 0.0810	$R_{int} = 0.1034$	$R_{int} = 0.0867$	R _{int} = 0.1130		
Goodness-of-fit on <i>F</i> ²	1.062	1.022	1.035	1.083	1.026		
Final <i>R</i> indexes ^a $[l \ge 2\sigma(l)]$	$R_1 = 0.0429$ $wR_2 = 0.0602$	$R_1 = 0.0326$ $wR_2 = 0.0525$	$R_1 = 0.0361$ $wR_2 = 0.0583$	$R_1 = 0.0346$ $wR_2 = 0.0719$	$R_1 = 0.0400$ $wR_2 = 0.0790$		
Final <i>R</i> indexes [all data]	$R_1 = 0.0917$ $wR_2 = 0.0709$	R1 = 0.0565 wR2 = 0.0568	$R_1 = 0.0680$ $wR_2 = 0.0664$	$R_1 = 0.0473$ $wR_2 = 0.0754$	$R_1 = 0.0744$ $wR_2 = 0.0907$		
Largest diff. peak/hole / eÅ ⁻³	0.41/-0.51	0.49/-0.54	0.39/-0.40	0.73/-0.30	0.40/-0.37		

[FeL _{Cl} (NCS) ₂] (1-S)		$[FeL_{Cl}(NCSe)_2] (1-Se)$		[FeL _{Cl} (NCBH ₃) ₂] (1-BH₃)	
<i>T</i> / K	123	123	298	123	298
Spin state	HS	LS	HS	LS	HS
Fe-N _{NCX} / Å	2.093(3)	1.934(3)	2.094(4)	1.940(16)	2.114(2)
Fe-N _{pyridine} / Å	2.189(2)	1.979(3)	2.192(3)	1.966(16)	2.1871(19)
Fe-N _{amine} / Å	2.240(2)	2.017(2)	2.226 (3)	2.014(16)	2.224(2)
Fe-N _{average} / Å	2.17	1.98	2.17	1.97	2.18
cis N-Fo-N / 9	74.70(9)-	80.15(10)-	74.82(12)-	83.49 (7)-	75.14(7)-
	101.14(15)	98.01(10)	100.92(12)	95.60(6)	101.64(7)
trans N-Fo-N / 9	163.56(9)-	173.29(9)-	164.22(14)-	174.58(9)-	164.45(8)-
	174.28(13)	177.54(13)	174.63(17)	176.66(7)	175.96(10)
Σ _{Fe} / °	88.3(5)	60.4(6)	86.8(7)	42.7(4)	89.5(4)
Θ	245.0(11)	169.1(11)	238.8(11)	110.4(8)	241.7(9)
N-C-S / °	178.6(3)	178.5(2)	178.5(4)	178.5(2)	178.7(3)
Fe-N-C _{NCS} / °	162.6(2)	173.6(2)	163.9(4)	172.43(16)	165.7(2)

 Table S2. Selected bond lengths and structural parameters for 1.

Table S3. Selected supramolecular interactions in 1-E (E=S, Se, BH₃).

	123K		298K	
1-S	Cl1-S1	3.372(13)		
	H2-S1	2.6403(9)		
1-Se	Cl1-Se1	3.459(3)	Cl1-Se1	3.529(16)
	H2-Se1	2.585(13)	H2-Se1	2.7465(8)
1-BH₃	Cl3-B1	3.454(2)	Cl1-B1	3.549(3)

H2-B1	3.129(2)	H2-B1	2.969(3)
-------	----------	-------	----------

Table S4. Values of the Mössbauer hyperfine parameters, derived from the least-square fitting of the ⁵⁷Fe Mössbauer spectra, where *T* is the temperature of the measurement, δ is the isomer shift, ΔE_Q is the quadrupole splitting, Γ is the linewidth, and RA is the spectral area of individual spectral components identified during spectra fitting.

Sample	Т	Component	$\delta \pm 0.01$	$\Delta E_Q \pm 0.01$	Γ±0.01	RA±1	Assignment
	(К)		(mm/s)	(mm/s)	(mm/s)	(%)	
1-S	80	Doublet	1.11	1.79	0.27	100	Fe(II), <i>S</i> = 2
	300	Doublet	0.99	1.36	0.24	100	Fe(II), <i>S</i> = 2
1-Se	80	Doublet	0.50	0.19	0.28	100	Fe(II), <i>S</i> = 0
	300	Doublet	0.98	1.23	0.26	100	Fe(II), <i>S</i> = 2
1-BH ₃	80	Doublet	0.47	0.17	0.27	100	Fe(II), <i>S</i> = 0
	300	Doublet	0.98	0.97	0.25	100	Fe(II), <i>S</i> = 2

Fig. S1 Intermolecular interactions exhibited by an Fe(II) complex with neighboring molecules in **1-S** (left), **1-Se** (middle) and **1-BH₃** (right).

Fig. S2 Scan rate dependent hysteresis loops of $\chi_{M}T$ -T curves for **1-Se**.

Fig. S3 Scan rate dependent hysteresis loops of $\chi_{M}T$ -T curves for **1-BH**₃.

Fig. S4 Overlay of the molecular structures of the Fe(II) complex at 123 K (LS state) and 298 K (HS state) in **1-Se** (left) and **1-BH**₃ (right).

Fig. S5 Thermogravimetric analysis (TGA) curves for **1-E** (E=S, Se, BH₃) at a 10 K min⁻¹ temperature rate under N₂ atmosphere.

Fig. S6 Experimental and simulated PXRD patterns of 1-S.

Fig. S7 Experimental and simulated PXRD patterns of 1-Se.

Fig. S8 Experimental and simulated PXRD patterns of 1-BH₃.