Supplementary Information of
High-pressure study of Li[Li\textsubscript{1/3}Ti\textsubscript{5/3}]O\textsubscript{4} spinel

Kazuhiko Mukai\ast,\Delta and Ikuya Yamada\Delta

\astToyota Central Research & Development Laboratories, Inc., 41–1 Yokomichi, Nagakute, Aichi
480–1192, Japan

\DeltaDepartment of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1–2 Gakuen, Sakai, Osaka 599–8570, Japan

\astE-mail: e1089@mosk.tytlabs.co.jp

Phone: +81-561-71-7698

Fax: +81-561-63-6119
Fig. S1 Characterization of LTO(raw): (a) result of the Rietveld analysis and (b) electrochemical charge and discharge tests in nonaqueous lithium cell.
Fig. S2 TEM specimen for the HP(200) sample. Depth of the sample is ~100 nm.
HP(1000)

$R_{wp}=15.9\%$ and $S=3.31$

Fig. S3 Result of the Rietveld analysis for the HP(1000) sample when assuming that the HP(1000) sample is in a single-phase of columbite-type TiO$_2$ with $Pbcn$ space group.
Fig. S4 (a) TEM image and (b) SAED pattern of the LTO(raw) sample. The SAED pattern is assigned as the diffraction pattern from the [111] incident with $Fd\bar{3}m$ space group.
Fig. S5 Rescaled charge and discharge curves of the nonaqueous lithium cells of the (a) HP(400), (b) HP(750), and HP(1000) samples.
The derivative of Q_{dis} (or Q_{cha}) with respect to the cell voltage, i.e., the dQ_{dis}/dV (or dQ_{cha}/dV) curves for the (a) LTO(raw), (b) HP(RT), (c) HP(400), (d) HP(750), and (e) HP(1000) samples. The dQ_{dis}/dV (or dQ_{cha}/dV) curves were obtained by the charge and discharge curves at the initial cycle shown in Fig. 8 of the text. The dQ_{dis}/dV (or dQ_{cha}/dV) curves of the HP(400), HP(750), and HP(1000) samples do not show distinct responses, due to their gradual increases (or decreases) in voltage as a function of discharge (or charge) capacity.