Supporting Information

Design of Atomically Precise Au₂Pd₆ Nanoclusters for Boosting Electrocatalytic Hydrogen Evolution on MoS₂

Yuanxin Du,⊥ Ji Xiang,⊥ Kun Ni, Yapei Yun, Guodong Sun, Xiaoyou Yuan, Hongting Sheng, Yanwu Zhu, and Manzhou Zhu*

⊥Y. Du and J. Xiang contributed equally.

a Department of Chemistry and Center for Atomic Engineering of Advanced Materials, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China. E-mail: zmz@ahu.edu.cn

b Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jin Zhai Rd, Hefei, Anhui Province, 230026, China.
Table of Contents:

Fig. S1. The absorption spectrum of Au$_2$Pd$_6$ NC.---3
Fig. S2-S5. The geometric structure analysis of Au$_2$Pd$_6$ NC.----------------------------------3-6
Fig. S6. The TEM image and XRD pattern of MoS$_2$.---7
Fig. S7. The XRD pattern of Au$_2$Pd$_6$/MoS$_2$---7
Fig. S8-S9. The absorption spectrum, mass spectrum, and geometric structure of Pd$_3$ and Au$_2$ NC.---7-8
Fig. S10. Exchange current density calculation of samples (Au$_2$Pd$_6$/MoS$_2$, Au$_2$-Pd$_3$/MoS$_2$, Pd$_3$/MoS$_2$, Au$_2$/MoS$_2$ and MoS$_2$).---8
Fig. S11. Cyclic voltammograms (0.3-0.4 V) recorded in 0.5 M H$_2$SO$_4$ for samples (Au$_2$Pd$_6$/MoS$_2$, Au$_2$-Pd$_3$/MoS$_2$, Pd$_3$/MoS$_2$, Au$_2$/MoS$_2$ and MoS$_2$).---9
Fig. S12. Cyclic voltammograms (−0.1−0.6 V) in pH = 7 phosphate buffer for various samples (Au$_2$Pd$_6$/MoS$_2$, Au$_2$-Pd$_3$/MoS$_2$, Pd$_3$/MoS$_2$, Au$_2$/MoS$_2$ and MoS$_2$).---10
Fig. S13. Calculated TOF of various samples (Au$_2$Pd$_6$/MoS$_2$, Au$_2$-Pd$_3$/MoS$_2$, Pd$_3$/MoS$_2$, Au$_2$/MoS$_2$ and MoS$_2$).---10
Fig. S14. The TEM image, XRD pattern and XPS spectra of Au$_2$Pd$_6$/MoS$_2$ after long-time HER tests.---11
Fig. S15. Pd 3d XPS spectra of Pd$_3$ and Pd$_3$/MoS$_2$.---12
Fig. S16. Raman spectra of MoS$_2$, Pd$_3$/MoS$_2$ and Au$_2$Pd$_6$/MoS$_2$.---12
Fig. S17. Different H adsorption sites in Au$_2$Pd$_6$ NC and Au$_2$Pd$_6$/MoS$_2$ system.---13
Fig. S18. The optimal H adsorption site in defect-free MoS$_2$.---13
Fig. S19. The other two sites (site 5, site 6) with the appropriate ΔG$_{H^+}$ in Au$_2$Pd$_6$/MoS$_2$ system.---14
Fig. S20. The optimal H adsorption site (site 4) in Au$_2$Pd$_6$ NC.---14
Fig. S21. Different H adsorption sites in Pd$_3$ NC and Pd$_3$/MoS$_2$ system.---15
Fig. S22. Different H adsorption sites in Au$_2$ NC and Au$_2$/MoS$_2$ system.---15
Fig. S23-S24. The density of state of different atoms in Au$_2$Pd$_6$/MoS$_2$ and the charge deformation density of Au$_2$Pd$_6$/MoS$_2$.---16
Table S1-S2. The electrochemical parameters of samples in this work and the comparison to other MoS2-metal based HER catalysts.

Table S3-S8. The Gibbs free energy of hydrogen adsorption on different sites in Au2Pd6 NC, Au2Pd6/MoS2, Pd3 NC, Pd3/MoS2, Au2 NC, Au2/MoS2 system.

Reference

Fig. S1. Optical absorption spectrum of Au2Pd6 NC.

Fig. S2. (A) The one way of one S atom linked to two Pd atoms and one Au atom, (B) the another way of one S atom linked to two Au atoms and one Pd atom, (C) The distance of Au-S, and Pd-S in the Au2Pd6 NC. (Color labels: yellow = Au, blue = Pd,
Fig. S3. The distances between Pd atoms in the two triangular Pd₃ units of Au₂Pd₆ NC. From Fig. S3, the Pd-Pd distances in the Pd₃ units were 2.772 Å, 2.776 Å, 2.800 Å. The distances between Pd₃-Pd₆ and Pd₂-Pd₄ were 7.224 Å, the distances between Pd₁-Pd₄ and Pd₃-Pd₅ were 6.080 Å, and the distances between Pd₂-Pd₅ and Pd₁-Pd₆ were 8.199 Å. The quadrangles of Pd₂Pd₃Pd₆Pd₄, Pd₁Pd₃Pd₅Pd₄, and Pd₂Pd₁Pd₆Pd₅ were parallelogram, which means that the two triangular Pd₃ units were paralleled.
Fig. S4. The distances between the Au and Pd atoms in the Au$_2$Pd$_6$ metal core of Au$_2$Pd$_6$ NC. In the Au$_2$Pd$_6$ core, the distance between Au$_1$-Au$_2$ was 3.088 Å, which is greatly larger than the bulk Au-Au distance (2.88 Å). The Au-Pd distances in the Au$_2$Pd$_6$ core were 3.001 Å, 3.096 Å, 3.150 Å, respectively.
The angles of Au and Pd atoms in the Au$_2$Pd$_6$ metal core of Au$_2$Pd$_6$ NC. The angles of Pd$_1$-Au$_1$-Pd$_4$ and Pd$_3$-Au$_2$-Pd$_5$ were 171.30 °, the angles of Pd$_1$-Pd$_3$-Au$_1$ and Au$_2$-Pd$_4$-Pd$_5$ were 60.47 °, and the angles of Pd$_3$-Au$_1$-Au$_2$ and Au$_1$-Au$_2$-Pd$_4$ were 59.51°, which means that the quadrangle of Pd$_1$Pd$_3$Au$_1$Au$_2$Pd$_4$Pd$_5$ was twisty.
Fig. S6. (A) TEM image and (B) XRD pattern of MoS$_2$.

Fig. S7. XRD pattern of Au$_2$Pd$_6$/MoS$_2$.

Fig. S8. (A) UV-vis and (B) MALDI-MS spectra of Pd$_3$ NC. Inset of (A): crystal structure of Pd$_3$ NC (blue = Pd, deep yellow = P, reseda = Cl). Fig. S8A shows the UV-vis spectrum of Pd$_3$ NC, in which the peaks at 340, 418, and 485 nm are fingerprints of Pd$_3$ NC. The X-ray structure of Pd$_3$ NC (Fig. S8A, inset) comprises a
triangular Pd₃ unit protected by three –PPh₃, three –PPh₂, and one Cl atom. Fig. S8B shows the matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) of Pd₃ NC with the molecular ion peak at ~1511.8 Da (theoretical Mᵦ = 1511.05).

Fig. S9. (A) UV-vis and (B) MALDI-MS spectra of Au₂ complex. Inset of (A): simulated diagram of Au₂ complex crystal structure (yellow = Au, purple = P, pink = Cl). The UV–vis spectrum of Au₂ showed one peak at 330 nm (Fig. S9A). Fig. S9B showed the matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) of Au₂ with the molecular ion peak at ~780.87 (theretical [M-2Cl+2H]ᵦ=780.155).

Fig. S10. Exchange current density of various samples calculated using extrapolation methods.
Fig. S11. Cyclic voltammograms (0.3-0.4 V) recorded in 0.5 M H₂SO₄ for (A) Au₂Pd₆/MoS₂, (B) Au₂-Pd₃/MoS₂, (C) Pd₃/MoS₂, (D) Au₂/MoS₂ and (E) MoS₂.
Fig. S12. Cyclic voltammograms (−0.1−0.6 V) recorded in pH = 7 phosphate buffer, scan rate: 50 mV/S.

Fig. S13. Calculated turnover frequencies for MoS$_2$ and various NCs modified MoS$_2$.
Fig. S14. (A) XRD pattern, (B) TEM image, (C) Mo 3d, (D) S 2p, (E) Au 4f, and (F) Pd 3d XPS spectra of $\text{Au}_2\text{Pd}_6/\text{MoS}_2$ after long-time durability test.
Fig. S15. Pd 3d XPS spectra of Pd$_3$ and Pd$_3$/MoS$_2$.

Fig. S16. Raman spectra of MoS$_2$, Pd$_3$/MoS$_2$ and Au$_2$Pd$_6$/MoS$_2$, the inset shows the schematic illustrations of the oscillating modes of E^{1}_{2g} and A_{1g}, respectively. Atom color code: green, Mo; yellow, S.
Fig. S17. Different H adsorption sites in (A) Au₂Pd₆ NC system and (B) Au₂Pd₆/MoS₂ system. Yellow ball: S, purple ball: Mo, blue ball: Pd, orange ball: Au, pink ball: P, green ball: H.

Fig. S18. The optimal H adsorption position in defect-free MoS₂, the corresponding ΔG_{H}^\ast is 1.83 eV. Yellow ball: S, purple ball: Mo, green ball: the adsorption H.
Fig. S19. The specific position of the other two sites with the appropriate ΔG_{H^*} in Au$_2$Pd$_6$/MoS$_2$ system. Yellow ball: S, purple ball: Mo, blue ball: Pd, orange ball: Au, pink ball: P, green ball: H, red ball: the adsorption H.

Fig. S20. H adsorption configuration (site 4) in the Au$_2$Pd$_6$ NC (from different orientations) with best ΔG_{H^*} value. Yellow ball: S, blue ball: Pd, orange ball: Au, pink ball: P, green ball: H, red ball: the adsorption H.
Fig. S21. Different H adsorption sites in (A) Pd$_3$ NC system and (B) Pd$_3$/MoS$_2$ system. Yellow ball: S, purple ball: Mo, blue ball: Pd, pink ball: P, dark green ball: Cl, green ball: H.

Fig. S22. Different H adsorption sites in (A) Au$_2$ NC system and (B) Au$_2$/MoS$_2$ system. Yellow ball: S, purple ball: Mo, orange ball: Au, pink ball: P, dark green ball: Cl, brown ball: C, green ball: H.
Fig. S23. The density of states of Au, Pd, S and P atoms in the Au$_2$Pd$_6$/MoS$_2$ system.

Fig. S24. The charge deformation density of Au$_2$Pd$_6$/MoS$_2$ system. The charge density of Au$_2$Pd$_6$ NC is decreased, while the charge density of MoS$_2$ is increased, it indicates the charge transfer from NC to MoS$_2$.
Table S1. Electrochemical Parameters of bare MoS$_2$ and various NCs modified MoS$_2$.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Overpotential at 10 mA/cm2 (mV)</th>
<th>Current density at 400 mV (mA/cm2)</th>
<th>Tafel slope (mV/dec)</th>
<th>Exchange capacitance (mF/cm2)</th>
<th>Double layer capacitance (µF/cm2)</th>
<th>Charge transfer resistance (Ω)</th>
<th>Series resistance (Ω)</th>
<th>The number of active sites (×103 mol/g)</th>
<th>TOF 400 (nm) at 1 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS$_2$</td>
<td>218</td>
<td>355</td>
<td>20.5</td>
<td>97</td>
<td>2.04</td>
<td>5.69</td>
<td>403</td>
<td>14.13</td>
<td>1.673</td>
</tr>
<tr>
<td>Au/MoS$_2$</td>
<td>180</td>
<td>319</td>
<td>30.1</td>
<td>94</td>
<td>3.89</td>
<td>11.65</td>
<td>329</td>
<td>10.42</td>
<td>2.425</td>
</tr>
<tr>
<td>Pd/MoS$_2$</td>
<td>148</td>
<td>283</td>
<td>53.7</td>
<td>88</td>
<td>7.58</td>
<td>22.48</td>
<td>181</td>
<td>6.82</td>
<td>3.373</td>
</tr>
<tr>
<td>Au$_x$Pd$_y$/MoS$_2$</td>
<td>141</td>
<td>273</td>
<td>61.7</td>
<td>86</td>
<td>8.31</td>
<td>24.71</td>
<td>178</td>
<td>6.45</td>
<td>3.472</td>
</tr>
<tr>
<td>Au$_x$Pd$_y$/MoS$_2$</td>
<td>127</td>
<td>232</td>
<td>91</td>
<td>67</td>
<td>9.88</td>
<td>32.08</td>
<td>163</td>
<td>6.08</td>
<td>4.02</td>
</tr>
</tbody>
</table>

Table S2. Comparison of HER performance of MoS$_2$-based catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Electrolyte</th>
<th>Overpotential at 10 mA/cm2 (mV)</th>
<th>Current density at 400 mV (mA/cm2)</th>
<th>Tafel slope (mV/dec)</th>
<th>Exchange current density (µA/cm2)</th>
<th>Double layer capacitance (mF/cm2)</th>
<th>Charge transfer resistance (Ω)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS$_2$</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>218</td>
<td>355</td>
<td>20.5</td>
<td>97</td>
<td>2.04</td>
<td>5.69</td>
<td>403</td>
</tr>
<tr>
<td>Au$_x$Pd$_y$/MoS$_2$</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>127</td>
<td>232</td>
<td>91</td>
<td>67</td>
<td>9.88</td>
<td>32.08</td>
<td>163</td>
</tr>
<tr>
<td>Au$_x$Pd$_y$/MoS$_2$</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>200</td>
<td>280</td>
<td>59.3</td>
<td>79.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MoS$_2$/Au 39.5 mol %</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>-</td>
<td>350</td>
<td>22.62</td>
<td>56.97</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MoS$_2$/Au (dark)</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>220</td>
<td>-</td>
<td>28</td>
<td>86</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. MoS$_2$/Au</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>-</td>
<td>279</td>
<td>68.8</td>
<td>0.921</td>
<td>1.6</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Se-doped MoS$_2$</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>140</td>
<td>275</td>
<td>42.7</td>
<td>55</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pt-MoS$_2$</td>
<td>0.1 M H$_2$SO$_4$</td>
<td>-</td>
<td>150</td>
<td>27</td>
<td>96</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pt/MoS$_2$-80</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>31</td>
<td>90</td>
<td>-</td>
<td>52</td>
<td>12.8</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: a The numerical value was calculated from the figure in the reference.
Table S3. The Gibbs free energy of hydrogen adsorption on different sites in Au$_2$Pd$_6$ NC system.

<table>
<thead>
<tr>
<th>Site in Figure S17A</th>
<th>ΔG_H^\ast (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.32718</td>
</tr>
<tr>
<td>2</td>
<td>-1.3483</td>
</tr>
<tr>
<td>3</td>
<td>-1.14434</td>
</tr>
<tr>
<td>4</td>
<td>-0.03647</td>
</tr>
<tr>
<td>5</td>
<td>-2.22077</td>
</tr>
<tr>
<td>6</td>
<td>-0.59976</td>
</tr>
<tr>
<td>7</td>
<td>-2.56855</td>
</tr>
<tr>
<td>8</td>
<td>-0.87684</td>
</tr>
<tr>
<td>9</td>
<td>-3.06807</td>
</tr>
<tr>
<td>10</td>
<td>-2.21782</td>
</tr>
<tr>
<td>11</td>
<td>-1.41258</td>
</tr>
<tr>
<td>12</td>
<td>-1.4237</td>
</tr>
</tbody>
</table>

The calculated ΔG_H^\ast on different sites in Au$_2$Pd$_6$ NC system show that the best H adsorption site is site 4 in Fig. S17A and Fig. S20, the ΔG_H^\ast on this site is -0.04 eV.
Table S4. The Gibbs free energy of hydrogen adsorption on different sites in Au$_2$Pd$_6$/MoS$_2$ system.

<table>
<thead>
<tr>
<th>Site in Figure S17B</th>
<th>ΔG_H^* (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.149833</td>
</tr>
<tr>
<td>2</td>
<td>0.4319</td>
</tr>
<tr>
<td>3</td>
<td>0.295432</td>
</tr>
<tr>
<td>4</td>
<td>-0.01148</td>
</tr>
<tr>
<td>5</td>
<td>0.022313</td>
</tr>
<tr>
<td>6</td>
<td>-0.02848</td>
</tr>
</tbody>
</table>

The calculated ΔG_H^* on different sites in Au$_2$Pd$_6$/MoS$_2$ system show that the best H adsorption site is site 4 in Fig. S17B and Fig. 5A, the ΔG_H^* on this site is -0.01 eV. Meanwhile, site 5 and site 6 also have an appropriate ΔG_H^*, which is 0.02 and -0.03 eV, respectively. The site position is detailedly shown in Fig. S19.

Table S5. The Gibbs free energy of hydrogen adsorption on different sites in Pd$_3$ NC system.

<table>
<thead>
<tr>
<th>Site in Figure S21A</th>
<th>ΔG_H^* (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.418051</td>
</tr>
<tr>
<td>2</td>
<td>0.72283</td>
</tr>
<tr>
<td>3</td>
<td>1.875788</td>
</tr>
</tbody>
</table>
Table S6. The Gibbs free energy of hydrogen adsorption on different sites in Pd₃/MoS₂ NC system.

<table>
<thead>
<tr>
<th>Site in Figure S21B</th>
<th>ΔG_{H₂}^*(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00724</td>
</tr>
<tr>
<td>2</td>
<td>0.961975</td>
</tr>
<tr>
<td>3</td>
<td>0.391343</td>
</tr>
<tr>
<td>4</td>
<td>0.993066</td>
</tr>
</tbody>
</table>

Table S7. The Gibbs free energy of hydrogen adsorption on different sites in Au₂ NC system.

<table>
<thead>
<tr>
<th>Site in Figure S22A</th>
<th>ΔG_{H₂}^*(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.733362</td>
</tr>
<tr>
<td>2</td>
<td>1.560567</td>
</tr>
<tr>
<td>3</td>
<td>2.279025</td>
</tr>
<tr>
<td>4</td>
<td>1.709955</td>
</tr>
<tr>
<td>5</td>
<td>1.705191</td>
</tr>
</tbody>
</table>

Table S8. The Gibbs free energy of hydrogen adsorption on different sites in Au₂/MoS₂ system.

<table>
<thead>
<tr>
<th>Site in Figure S22B</th>
<th>ΔG_{H₂}^*(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.727127</td>
</tr>
<tr>
<td>2</td>
<td>1.55778</td>
</tr>
<tr>
<td>3</td>
<td>2.241595</td>
</tr>
<tr>
<td>4</td>
<td>1.721984</td>
</tr>
<tr>
<td>5</td>
<td>1.686808</td>
</tr>
</tbody>
</table>
References

