The water-soluble Re₆-clusters with aromatic phosphine ligands – from synthesis to potential biomedical applications

Anton Α. Ivanov,^{a,b} Dmitry Ι. Konovalov,^{a,c} Tatiana Ν. Pozmogova,^{b,c,d} Anastasiya Solovieva,^{b,d} Anatoly R. Melnikov,^{c,e} Konstantin Brylev,^{a,c} О. Α. Kuratieva,^{a,c} V. Yanshole,^{c,f} Kaplan Kirakci,^g Natalia V. Vadim Kamil Lana,^g Svetlana N. Cheltygmasheva,^b Noboru Kitamura,^h Lidiya V. Shestopalova,^c Yuri V. Mironov^{a,c} and Michael A. Shestopalov*a,b,c,d

- ^{a.} Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia.
- ^b Federal Research Center of Fundamental and Translational Medicine, 2 Timakova str., 630117 Novosibirsk, Russia.
 ^c Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia.
- ^d Scientific Institute of Clinical and Experimental Lymphology branch of ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
- e. Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya st., Novosibirsk, 630090, Russia.
- ^{f.} International Tomography Center SB RAS, 3a Institutskaya St., 630090 Novosibirsk, Russia.
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic.
- ^h Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810 Sapporo, Japan.

Table of content:

Figure 1S. HR-ESI-MS of H ₄ -1·2HBr and H ₄ -2·2HBr	3
Figure 2S. 1H NMR of H₄-1·2HBr and H₄-2·2HBr	3
Figure 3S. FTIR spectra of H ₄ -1·2HBr·H ₂ O and H ₄ -2·2HBr·H ₂ O	4
Table 1S. Crystal data and experimental details	5
Table 2S. Selected interatomic distances	6
Figure 4S. Layers parallel to the ab plane	6
Figure 5S. Hydrogen bonds in H ₄ -2·2HBr·6H ₂ O·Et ₂ O structure	7
Figure 6S. Hydrogen bonds in H ₄ -2·2HBr·6H ₂ O·Et ₂ O structure	7
Figure 7S. HR-ESI-MS of Na₄-1·18H₂O in water	8
Figure 8S . HR-ESI-MS of Na ₄ - 2 ·16H ₂ O in water	8
Figure 9S. 1H NMR of Na ₄ - $1\cdot$ 18H ₂ O and Na ₄ - $2\cdot$ 16H ₂ O	9
Figure 10S. FTIR spectra of Na ₄ -1·18H ₂ O and Na ₄ -2·16H ₂ O	9
Figure 11S. Non-porous 3D-coordination polymer in Na ₄ -1·4H ₂ O and Na ₄ -2·4H ₂ O structures	10
Table 3S. The Na–O and hydrogen bond lengths	10
Figure 12S . Normalised luminescence spectra of acetonitrile solutions of H ₄ - 1 ·2HBr·H ₂ O and H ₄ - 2 ·2HBr·H ₂ O	11
Figure 13S. Luminescence decay curves of powdered H_4 -1·2HBr· H_2O and H_4 -2·2HBr· H_2O	11
Figure 14S . Luminescence decay curves of acetonitrile solutions of H_4 - 1 ·2HBr·H ₂ O and H_4 - 2 ·2HBr·H ₂ O	12
Eigure 155 Luminescence spectra of H., 1,2HBr.H.O in DBS	12
Figure 155. Luminescence spectra of H_4 -1 21101 H_2 O in PBS	12
Figure 175. Luminescence decay curves of H_{4} -2.2HBr H_{2} O in PBS.	12
Figure 185 Luminescence decay curves of H_2 -2.2HBr·H ₂ O in PBS	
Figure 195. Photoluminescence and X-ray excited optical luminescence (XEOL) spectra of	13
H_4 - 1 ·2HBr·H ₂ O and H_4 - 2 ·2HBr·H ₂ O powders	14
Figure 20S . Fragment of HR-ESI-MS of H ₄ - 1 ·2HBr in ethanol containing HBr	14
Figure 21S . Fragment of HR-ESI-MS of H ₄ - 1 ·2HBr in ethanol containing HBr	15
Figure 22S . TGA curves of H_4 - 1 ·2HBr·H ₂ O and H_4 - 2 ·2HBr·H ₂ O	15
Figure 23S. TGA curves of Na ₄ - $1\cdot$ 18H ₂ O and Na ₄ - $2\cdot$ 16H ₂ O	16
Figure 24S . FTIR spectra of Na ₄ - $1.4H_2O$ and Na ₄ - $2.4H_2O$	16
Figure 25S . TGA curves of Na ₄ - 1 ·4H ₂ O and Na ₄ - 2 ·4H ₂ O	17

Figure 1S. HR-ESI-MS of H₄-**1**·2HBr (left, m/z = 1461.9931) and H₄-**2**·2HBr (right, m/z = 1649.7751) in acetone (black) and the simulation of $[{Re_6Q_8}(PPh_2CH_2CH_2COOH)_6]^{2+}$ clusters (Q = S (m/z = 1461.9959) and Se (m/z = 1649.7768)) (red).

Figure 2S. ¹H NMR spectra of (2-carboxyethyl)diphenylphosphine (black), $1 \cdot 2HBr \cdot H_2O$ (red) and H_4 - $2 \cdot 2HBr \cdot H_2O$ (blue) in DMSO-d₆.

Figure 3S. FTIR spectra of H_4 -1·2HBr· H_2O and H_4 -2·2HBr· H_2O compared with that of the ligands, i.e., (2-carboxyethyl)diphenylphosphine.

Table 1S. Crystal data and experimental details for [{Re₆Se₈}(PPh₂CH₂CH₂COOH)₆]Br₂·6H₂O·Et₂O $(H_4-2\cdot2HBr\cdot6H_2O\cdotEt_2O)$, $Na_4[{Re_6S_8}(PPh_2CH_2CH_2COO)_6]$ $(Na_4-1\cdot4H_2O)$, and $Na_4[{Re_6Se_8}(PPh_2CH_2CH_2COO)_6]$ $(Na_4-2\cdot4H_2O)$.

Parameter	H_4 - 2 ·2HBr·6H ₂ O·Et ₂ O	Na ₄ - 1 ·4H ₂ O	Na ₄ - 2 ·4H ₂ O
Empirical formula	$C_{94}H_{112}Br_2O_{19}P_6Re_6Se_8$	$C_{90}H_{92}Na_4O_{16}P_6Re_6S_8$	$C_{90}H_{92}Na_4O_{16}P_6Re_6Se_8$
Formula weight	3640.35	3081.09	3456.29
Crystal system	Hexagonal	Triclinic	Triclinic
Space group	R 3c	P 1	P 1
Z	6	1	1
Т (К)	150(2)	150(2)	150(2)
a (Å)	17.6727(5)	13.9958(3)	14.1316(15)
b (Å)	17.6727(5)	14.5841(3)	14.6796(15)
<i>c</i> (Å)	75.9637 (19)	14.8362(4)	14.8908(15)
V (Å)	20546.7(13)	2374.12(10)	2374.12(10)
α (º)	90	61.351(1)	60.961(3)
β (º)	90	78.554(1)	78.277(3)
γ (º)	120	63.323(1)	63.097(3)
D _{calc} (g cm ⁻³)	1.765	2.155	2.384
μ (mm⁻¹)	8.110	7.977	10.715
Crystal size (mm)	$0.395 \times 0.195 \times 0.185$	$0.20 \times 0.12 \times 0.10$	$0.20 \times 0.20 \times 0.16$
ϑ scan range (º)	1.709 to 26.372	2.283 to 26.371	1.564 to 28.426
	$-22 \le h \le 22$	<i>−</i> 17 ≤ <i>h</i> ≤ 17	$-18 \le h \le 18$
indices ranges	$-21 \le k \le 22$	$-18 \le k \le 17$	$-19 \le k \le 19$
	<i>−</i> 94 ≤ <i>l</i> ≤ 93	–18 ≤ / ≤ 18	$-19 \le l \le 18$
Reflections	52436	20301	21291
collected Independent	4675	9667	11836
reflections Observed			
reflections [1 >	4134	8955	10372
2σ(I)]			
Parameters	236	603	601
Rint	0.0256	0.0304	0.0181
Goodness-of-fit	1 116	1 028	1 055
(GOE) on E^2	1.110	1.020	1.000
$R^{a}_{\mu}/wR^{b}_{\mu}[1 > 2\sigma(1)]$	0 0355/0 0979	0 0192/0 0464	0 0205/0 0467
$n_1 / m n_2 [1 > 20(1)]$	0.033370.0373	0.0132/0.0404	0.0203/0.0407
R_1^a/wR_2^b (all data)	0.0433/0.1034	0.0215/0.0472	0.0261/0.0486
Δρ _{max} /Δρ _{min} (e·Å ⁻³)	1.986/-1.316	1.274/-1.004	1.631/-1.037

Table 2S. Selected interatomic distances (Å) for [{Re₆Se₈}(PPh₂CH₂CH₂COOH)₆]Br₂·6H₂O·Et₂O (H₄- $2 \cdot 2$ HBr·6H₂O·Et₂O),Na₄[{Re₆S₈}(PPh₂CH₂CH₂COO)₆]·4H₂O (Na₄-1·4H₂O),andNa₄[{Re₆Se₈}(PPh₂CH₂CH₂COO)₆]·4H₂O (Na₄-2·4H₂O). Na_4 -1·4H₂O) Na_4 -1·4H₂O)

Compound	Re–Re (Å)	Re–Q (Å)	Re–P (Å)
H_4 - 2 ·2HBr·6H ₂ O·Et ₂ O	2.6389(4)-	2 5060(7)-2 5244(6)	2.4807(15)
	2.6455(4)	2.5000(7)=2.5244(0)	
Na ₄ - 1 ·4H ₂ O	2.60495(16)-	2 2064/7) 2 4120/7)	2 4042(0) 2 4012(7)
	2.61506(15)	2.3004(7)=2.4129(7)	2.4842(8)-2.4913(7)
Na ₄ - 2 ·4H ₂ O	2.6363(3)-	2.4994(4)–2.5269(4)	2.4849(8)–2.4909(8)
	2.6515(3)		

Figure 4S. Layers parallel to the *ab* plane observed in the H_4 -**2**·2HBr·6H₂O·Et₂O structure.

Figure 5S. Hydrogen bonds observed in the H_4 -**2**·2HBr·6H₂O·Et₂O structure.

Figure 6S. Hydrogen bonds observed in the H_4 -**2**·2HBr·6H₂O·Et₂O structure.

Figure 7S. HR-ESI-MS of Na₄-1·18H₂O in water (black) and corresponding simulations of $\{Na_x[\{Re_6S_8\}(PPh_2CH_2CH_2COO)_6]\}^{4-x}$ (x = 0, m/z = 729.4872; x = 1, m/z = 980.3126; x = 2, m/z = 1481.9633) (coloured).

Figure 8S. HR-ESI-MS of Na₄-**2**·16H₂O in water (black) and a simulation of cluster forms Na_x[{Re₆Se₈}(PPh₂CH₂CH₂COO)₆]^{4-x} (x = 0 (m/z = 823.3777), 1 (m/z = 1105.4996)) and 2 (m/z =

1669.7442) (coloured).

Figure 9S. ¹H NMR spectra of (2-carboxyethyl)diphenylphosphine sodium salt (black), Na₄- $1\cdot18H_2O$ (red) and Na₄- $2\cdot16H_2O$ (blue) in D₂O.

Figure 10S. FTIR spectra of Na₄- $1\cdot$ 18H₂O and Na₄- $2\cdot$ 16H₂O compared with that of the ligands, i.e., (2-carboxyethyl)diphenylphosphine.

Figure 11S. Non-porous 3D-coordination polymer based on octahedral clusters and alkali metals observed in the Na_4 -**1**·4H₂O and Na_4 -**2**·4H₂O structures.

Contact	Na₄- 1 ·4H₂O (Å)	Na₄- 2 ·4H₂O (Å)
01W…0212	2.774	2.771
02W…0311	2.804	2.825
01W…02W	2.764 and 2.890	2.780 and 2.895
Na1…O111	2.297	2.289
Na1…O112	2.357	2.367
Na1…O211	2.262	2.257
Na1…O312	2.231	2.227
Na2…O111	2.347	2.368
Na2…O112	2.364	2.384
Na2…O212	2.265	2.293
Na2…O311	2.313	2.308
Na2…O312	2.615	2.696

Table 3S. The Na–O and hydrogen bond lengths in Na₄- $1\cdot$ 4H₂O and Na₄- $2\cdot$ 4H₂O.

Figure 12S. Emission spectra of acetonitrile solutions of H_4 -**1**·2HBr·H₂O (black line) and H_4 -**2**·2HBr·H₂O (red line) under oxygen-free conditions.

Figure 13S. Luminescence decay curves of powdered H_4 -**1**·2HBr·H₂O (black line) and H_4 -**2**·2HBr·H₂O (red line).

Figure 14S. Luminescence decay curves of aerated (left) and deaerated (right) acetonitrile solutions of H_4 -**1**·2HBr·H₂O (black line) and H_4 -**2**·2HBr·H₂O (red line).

Figure 15S. Luminescence spectra of H_4 -1·2HBr· H_2O in argon- (a) and oxygen-saturated (b) PBS.

Figure 16S. Luminescence spectra of H_4 -2·2HBr·H₂O in argon- (a) and oxygen-saturated (b) PBS.

Figure 17S. Luminescence decay curves of H_4 -**1**·2HBr·H₂O recorded at 720 nm in argon- (a) and oxygen-saturated (b) PBS.

Figure 18S. Luminescence decay curves of H_4 -**2**·2HBr·H₂O recorded at 765 nm in argon- (a) and oxygen-saturated (b) PBS.

Figure 19S. Photoluminescence and X-ray excited optical luminescence (XEOL) spectra of H_4 -**1**·2HBr·H₂O (A) and H_4 -**2**·2HBr·H₂O (B) powders.

Figure 20S. Fragment of HR-ESI-MS of H₄- $1\cdot$ 2HBr in ethanol containing HBr (black) and corresponding simulation (coloured). R¹ = CH₂CH₂COOH, R² = CH₂CH₂COOEt. Measured m/z values correspond to theoretical values: 1476.0116, 1490.0273 and 1504.0429 from left to right.

Figure 21S. Fragment of HR-ESI-MS of H₄- $2\cdot$ 2HBr in ethanol containing HBr (black) and corresponding simulation (coloured). R¹ = CH₂CH₂COOH, R² = CH₂CH₂COOEt. Measured m/z values correspond to theoretical values: 1677.8082, 1691.8239, 1705.8396 from left to right.

Figure 22S. TGA curves of H_4 -**1**·2HBr·H₂O and H_4 -**2**·2HBr·H₂O. Heating rates are 10° C·min⁻¹.

Figure 23S. TGA curves of Na₄-1·18H₂O and Na₄-2·16H₂O. Heating rates are 10° C·min⁻¹.

Figure 24S. FTIR spectra of Na₄- $1\cdot$ 4H₂O and Na₄- $2\cdot$ 4H₂O compared with that of the ligands, i.e., (2-carboxyethyl)diphenylphosphine.

Figure 25S. TGA curves of Na₄- $1\cdot$ 4H₂O and Na₄- $2\cdot$ 4H₂O. Heating rates of 10° C·min⁻¹.