The water-soluble Re_6-clusters with aromatic phosphine ligands – from synthesis to potential biomedical applications

Anton A. Ivanov,a,b Dmitry I. Konovalov,a,c Tatiana N. Pozmogova,b,c,d Anastasiya O. Solovieva,b,d Anatoly R. Melnikov,c,e Konstantin A. Brylev,a,c Natalia V. Kuratieva,a,c Vadim V. Yanshole,c,f Kaplan Kirakci,g Kamil Lang,g Svetlana N. Cheltygmasheva,b Noboru Kitamura,h Lidiya V. Shestopalova,c Yuri V. Mironova,c and Michael A. Shestopalov*a,b,c,d

a Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia.
b Federal Research Center of Fundamental and Translational Medicine, 2 Timakova str., 630117 Novosibirsk, Russia.
c Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia.
d Scientific Institute of Clinical and Experimental Lymphology – branch of ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
e Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya st., Novosibirsk, 630090, Russia.
f International Tomography Center SB RAS, 3 Institutskaya St., 630090 Novosibirsk, Russia.
g Institute of Inorganic Chemistry of the Czech Academy of Sciences, v.v.i., Husinec–Řež 1002, 250 68 Řež, Czech Republic.
h Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810 Sapporo, Japan.
Table of content:

Figure 1S. HR-ESI-MS of H$_4$-1·2HBr and H$_4$-2·2HBr3

Figure 2S. 1H NMR of H$_4$-1·2HBr and H$_4$-2·2HBr ..3

Figure 3S. FTIR spectra of H$_4$-1·2HBr·H$_2$O and H$_4$-2·2HBr·H$_2$O 4

Table 1S. Crystal data and experimental details ..5

Table 2S. Selected interatomic distances ...6

Figure 4S. Layers parallel to the ab plane ...6

Figure 5S. Hydrogen bonds in H$_4$-2·2HBr·6H$_2$O·Et$_2$O structure7

Figure 6S. Hydrogen bonds in H$_4$-2·2HBr·6H$_2$O·Et$_2$O structure7

Figure 7S. HR-ESI-MS of Na$_4$·1·18H$_2$O in water ..8

Figure 8S. HR-ESI-MS of Na$_4$·2·16H$_2$O in water ..8

Figure 9S. 1H NMR of Na$_4$·1·18H$_2$O and Na$_4$·2·16H$_2$O9

Figure 10S. FTIR spectra of Na$_4$·1·18H$_2$O and Na$_4$·2·16H$_2$O9

Figure 11S. Non-porous 3D-coordination polymer in Na$_4$·1·4H$_2$O and Na$_4$·2·4H$_2$O structures10

Table 3S. The Na–O and hydrogen bond lengths ..10

Figure 12S. Normalised luminescence spectra of acetonitrile solutions of H$_4$-1·2HBr·H$_2$O and H$_4$-2·2HBr·H$_2$O ..11

Figure 13S. Luminescence decay curves of powdered H$_4$-1·2HBr·H$_2$O and H$_4$-2·2HBr·H$_2$O ..11

Figure 14S. Luminescence decay curves of acetonitrile solutions of H$_4$·1·2HBr·H$_2$O and H$_4$-2·2HBr·H$_2$O ..12

Figure 15S. Luminescence spectra of H$_4$·1·2HBr·H$_2$O in PBS12

Figure 16S. Luminescence spectra of H$_4$·2·2HBr·H$_2$O in PBS12

Figure 17S. Luminescence decay curves of H$_4$·1·2HBr·H$_2$O in PBS13

Figure 18S. Luminescence decay curves of H$_4$·2·2HBr·H$_2$O in PBS13

Figure 19S. Photoluminescence and X-ray excited optical luminescence (XEOL) spectra of H$_4$·1·2HBr·H$_2$O and H$_4$·2·2HBr·H$_2$O powders14

Figure 20S. Fragment of HR-ESI-MS of H$_4$·1·2HBr in ethanol containing HBr14

Figure 21S. Fragment of HR-ESI-MS of H$_4$·1·2HBr in ethanol containing HBr15

Figure 22S. TGA curves of H$_4$·1·2HBr·H$_2$O and H$_4$·2·2HBr·H$_2$O15

Figure 23S. TGA curves of Na$_4$·1·18H$_2$O and Na$_4$·2·16H$_2$O16

Figure 24S. FTIR spectra of Na$_4$·1·4H$_2$O and Na$_4$·2·4H$_2$O16

Figure 25S. TGA curves of Na$_4$·1·4H$_2$O and Na$_4$·2·4H$_2$O17
Figure 1S. HR-ESI-MS of H₄-1·2HBr (left, m/z = 1461.9931) and H₄-2·2HBr (right, m/z = 1649.7751) in acetone (black) and the simulation of [{Re₆Q₆}(PPh₂CH₂CH₂COOH)₆]²⁺ clusters (Q = S (m/z = 1461.9959) and Se (m/z = 1649.7768)) (red).

Figure 2S. ¹H NMR spectra of (2-carboxyethyl)diphenylphosphine (black), 1·2HBr·H₂O (red) and H₄·2·2HBr·H₂O (blue) in DMSO-d₆.
Figure 3S. FTIR spectra of $\text{H}_4\cdot\text{1HBr}\cdot\text{H}_2\text{O}$ and $\text{H}_4\cdot\text{2HBr}\cdot\text{H}_2\text{O}$ compared with that of the ligands, i.e., (2-carboxyethyl)diphenylphosphine.
Table 15. Crystal data and experimental details for \([\text{Re}_6\text{Se}_8]\{\text{PPh}_2\text{CH}_2\text{CH}_2\text{COOH}\}_6]\text{Br}_2\cdot\text{6H}_2\text{O}\cdot\text{Et}_2\text{O}, \text{Na}_4[\{\text{Re}_6\text{Se}_8]\{\text{PPh}_2\text{CH}_2\text{CH}_2\text{COOH}\}_6] (\text{Na}_4\cdot\text{1}\cdot\text{4H}_2\text{O}), \text{and} \text{Na}_4[\{\text{Re}_6\text{Se}_8]\{\text{PPh}_2\text{CH}_2\text{CH}_2\text{COO}\}_6] (\text{Na}_4\cdot\text{2}\cdot\text{4H}_2\text{O}).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>H$_2$·2·2HBr·6H$_2$O·Et$_2$O</th>
<th>Na$_4$·1·4H$_2$O</th>
<th>Na$_4$·2·4H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C${94}$H${112}$Br2O${19}$P$_6$Re$_6$Se$_8$</td>
<td>C${90}$H${92}$Na4O${16}$P$_6$Re$_6$Se$_8$</td>
<td>C${90}$H${92}$Na4O${16}$P$_6$Re$_6$Se$_8$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>3640.35</td>
<td>3081.09</td>
<td>3456.29</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Hexagonal</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>R 3c</td>
<td>P 1</td>
<td>P 1</td>
</tr>
<tr>
<td>Z</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T (K)</td>
<td>150(2)</td>
<td>150(2)</td>
<td>150(2)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>17.6727(5)</td>
<td>13.9958(3)</td>
<td>14.1316(15)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>17.6727(5)</td>
<td>14.5841(3)</td>
<td>14.6796(15)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>75.9637 (19)</td>
<td>14.8362(4)</td>
<td>14.8908(15)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>20546.7(13)</td>
<td>2374.12(10)</td>
<td>2374.12(10)</td>
</tr>
<tr>
<td>α (º)</td>
<td>90</td>
<td>61.351(1)</td>
<td>60.961(3)</td>
</tr>
<tr>
<td>β (º)</td>
<td>90</td>
<td>78.554(1)</td>
<td>78.277(3)</td>
</tr>
<tr>
<td>γ (º)</td>
<td>120</td>
<td>63.323(1)</td>
<td>63.097(3)</td>
</tr>
<tr>
<td>D$_{calc}$ (g cm$^{-3}$)</td>
<td>1.765</td>
<td>2.155</td>
<td>2.384</td>
</tr>
<tr>
<td>µ (mm$^{-1}$)</td>
<td>8.110</td>
<td>7.977</td>
<td>10.715</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.395 × 0.195 × 0.185</td>
<td>0.20 × 0.12 × 0.10</td>
<td>0.20 × 0.20 × 0.16</td>
</tr>
<tr>
<td>θ scan range (º)</td>
<td>1.709 to 26.372</td>
<td>2.283 to 26.371</td>
<td>1.564 to 28.426</td>
</tr>
<tr>
<td>Indices ranges</td>
<td>–22 ≤ h ≤ 22</td>
<td>–17 ≤ h ≤ 17</td>
<td>–18 ≤ h ≤ 18</td>
</tr>
<tr>
<td></td>
<td>–21 ≤ k ≤ 22</td>
<td>–18 ≤ k ≤ 17</td>
<td>–19 ≤ k ≤ 19</td>
</tr>
<tr>
<td></td>
<td>–94 ≤ l ≤ 93</td>
<td>–18 ≤ l ≤ 18</td>
<td>–19 ≤ l ≤ 18</td>
</tr>
<tr>
<td>Reflections</td>
<td>52436</td>
<td>20301</td>
<td>21291</td>
</tr>
<tr>
<td>collected reflections</td>
<td>4675</td>
<td>9667</td>
<td>11836</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4134</td>
<td>8955</td>
<td>10372</td>
</tr>
<tr>
<td>Observed reflections [I > 2σ(I)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>236</td>
<td>603</td>
<td>601</td>
</tr>
<tr>
<td>R$_{int}$</td>
<td>0.0256</td>
<td>0.0304</td>
<td>0.0181</td>
</tr>
<tr>
<td>Goodness-of-fit (GOF) on F2</td>
<td>1.116</td>
<td>1.028</td>
<td>1.055</td>
</tr>
<tr>
<td>R_I^2 / wR_I^b [I > 2σ(I)]</td>
<td>0.0355/0.0979</td>
<td>0.0192/0.0464</td>
<td>0.0205/0.0467</td>
</tr>
<tr>
<td>R_E^2 / wR_E^b (all data)</td>
<td>0.0433/0.1034</td>
<td>0.0215/0.0472</td>
<td>0.0261/0.0486</td>
</tr>
<tr>
<td>$\Delta\rho_{max}/\Delta\rho_{min}$ (e·Å$^{-3}$)</td>
<td>1.986/–1.316</td>
<td>1.274/–1.004</td>
<td>1.631/–1.037</td>
</tr>
</tbody>
</table>
Table 2S. Selected interatomic distances (Å) for [(Re₆Se₈)(PPh₂CH₂CH₂COOH)₆]Br₂·6H₂O·Et₂O (H₄-2·2HBr·6H₂O·Et₂O), Na₄[(Re₆Se₈)(PPh₂CH₂CH₂COO)₆]·4H₂O (Na₄-1·4H₂O), and Na₄[(Re₆Se₈)(PPh₂CH₂CH₂COO)₆]·4H₂O (Na₄-2·4H₂O).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Re–Re (Å)</th>
<th>Re–Q (Å)</th>
<th>Re–P (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₄-2·2HBr·6H₂O·Et₂O</td>
<td>2.6389(4)–2.6455(4)</td>
<td>2.5060(7)–2.5244(6)</td>
<td>2.4807(15)</td>
</tr>
<tr>
<td>Na₄-1·4H₂O</td>
<td>2.60495(16)–2.61506(15)</td>
<td>2.3864(7)–2.4129(7)</td>
<td>2.4842(8)–2.4913(7)</td>
</tr>
<tr>
<td>Na₄-2·4H₂O</td>
<td>2.6363(3)–2.6515(3)</td>
<td>2.4994(4)–2.5269(4)</td>
<td>2.4849(8)–2.4909(8)</td>
</tr>
</tbody>
</table>

Figure 4S. Layers parallel to the ab plane observed in the H₄-2·2HBr·6H₂O·Et₂O structure.
Figure 5S. Hydrogen bonds observed in the H₄-2HBr·6H₂O·Et₂O structure.

Figure 6S. Hydrogen bonds observed in the H₄-2HBr·6H₂O·Et₂O structure.
Figure 7S. HR-ESI-MS of Na₄·1·18H₂O in water (black) and corresponding simulations of {Na₄[[Re₆Se₆](PPh₂CH₂CH₂COO)]₆}⁴⁻⁻⁻ (x = 0, m/z = 729.4872; x = 1, m/z = 980.3126; x = 2, m/z = 1481.9633) (coloured).

Figure 8S. HR-ESI-MS of Na₄·2·16H₂O in water (black) and a simulation of cluster forms Na₄[[Re₆Se₆](PPh₂CH₂CH₂COO)]₆}⁴⁻⁻⁻ (x = 0 (m/z = 823.3777), 1 (m/z = 1105.4996)) and 2 (m/z = 1669.7442) (coloured).
Figure 9S. 1H NMR spectra of (2-carboxyethyl)diphenylphosphine sodium salt (black), Na$_4$-1·18H$_2$O (red) and Na$_4$-2·16H$_2$O (blue) in D$_2$O.

Figure 10S. FTIR spectra of Na$_4$-1·18H$_2$O and Na$_4$-2·16H$_2$O compared with that of the ligands, i.e., (2-carboxyethyl)diphenylphosphine.
Figure 11S. Non-porous 3D-coordination polymer based on octahedral clusters and alkali metals observed in the Na₄·1·4H₂O and Na₄·2·4H₂O structures.

Table 3S. The Na–O and hydrogen bond lengths in Na₄·1·4H₂O and Na₄·2·4H₂O.

<table>
<thead>
<tr>
<th>Contact</th>
<th>Na₄·1·4H₂O (Å)</th>
<th>Na₄·2·4H₂O (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1W···O212</td>
<td>2.774</td>
<td>2.771</td>
</tr>
<tr>
<td>O2W···O311</td>
<td>2.804</td>
<td>2.825</td>
</tr>
<tr>
<td>O1W···O2W</td>
<td>2.764 and 2.890</td>
<td>2.780 and 2.895</td>
</tr>
<tr>
<td>Na1···O111</td>
<td>2.297</td>
<td>2.289</td>
</tr>
<tr>
<td>Na1···O112</td>
<td>2.357</td>
<td>2.367</td>
</tr>
<tr>
<td>Na1···O211</td>
<td>2.262</td>
<td>2.257</td>
</tr>
<tr>
<td>Na1···O312</td>
<td>2.231</td>
<td>2.227</td>
</tr>
<tr>
<td>Na2···O111</td>
<td>2.347</td>
<td>2.368</td>
</tr>
<tr>
<td>Na2···O112</td>
<td>2.364</td>
<td>2.384</td>
</tr>
<tr>
<td>Na2···O212</td>
<td>2.265</td>
<td>2.293</td>
</tr>
<tr>
<td>Na2···O311</td>
<td>2.313</td>
<td>2.308</td>
</tr>
<tr>
<td>Na2···O312</td>
<td>2.615</td>
<td>2.696</td>
</tr>
</tbody>
</table>
Figure 12S. Emission spectra of acetonitrile solutions of H$_4$-1·2HBr·H$_2$O (black line) and H$_4$-2·2HBr·H$_2$O (red line) under oxygen-free conditions.

Figure 13S. Luminescence decay curves of powdered H$_4$-1·2HBr·H$_2$O (black line) and H$_4$-2·2HBr·H$_2$O (red line).
Figure 14S. Luminescence decay curves of aerated (left) and deaerated (right) acetonitrile solutions of H$_4$-1·2HBr·H$_2$O (black line) and H$_4$-2·2HBr·H$_2$O (red line).

Figure 15S. Luminescence spectra of H$_4$-1·2HBr·H$_2$O in argon- (a) and oxygen-saturated (b) PBS.

Figure 16S. Luminescence spectra of H$_4$-2·2HBr·H$_2$O in argon- (a) and oxygen-saturated (b) PBS.
Figure 17S. Luminescence decay curves of H₄-1·2HBr·H₂O recorded at 720 nm in argon- (a) and oxygen-saturated (b) PBS.

Figure 18S. Luminescence decay curves of H₄-2·2HBr·H₂O recorded at 765 nm in argon- (a) and oxygen-saturated (b) PBS.
Figure 19S. Photoluminescence and X-ray excited optical luminescence (XEOL) spectra of H₄-1·2HBr·H₂O (A) and H₄-2·2HBr·H₂O (B) powders.

Figure 20S. Fragment of HR-ESI-MS of H₄-1·2HBr in ethanol containing HBr (black) and corresponding simulation (coloured). R¹ = CH₂CH₂COOH, R² = CH₂CH₂COOEt. Measured m/z values correspond to theoretical values: 1476.0116, 1490.0273 and 1504.0429 from left to right.
Figure 21S. Fragment of HR-ESI-MS of H₄·2·HBr in ethanol containing HBr (black) and corresponding simulation (coloured). R¹ = CH₂CH₂COOH, R² = CH₂CH₂COOEt. Measured m/z values correspond to theoretical values: 1677.8082, 1691.8239, 1705.8396 from left to right.

Figure 22S. TGA curves of H₄·1·2HBr·H₂O and H₄·2·2HBr·H₂O. Heating rates are 10° C·min⁻¹.
Figure 23S. TGA curves of Na₄·1·18H₂O and Na₄·2·16H₂O. Heating rates are 10° C·min⁻¹.

Figure 24S. FTIR spectra of Na₄·1·4H₂O and Na₄·2·4H₂O compared with that of the ligands, i.e., (2-carboxyethyl)diphenylphosphine.
Figure 25S. TGA curves of Na$_4$-1·4H$_2$O and Na$_4$-2·4H$_2$O. Heating rates of 10° C·min$^{-1}$.