A ligand conformation preorganization approach to construct a copper-hexacarboxylate framework with a novel topology for selective gas adsorption

Yao Wang,^{*a*} Minghui He,^{*a*} Xiaoxia Gao,^{*a*} Xia Wang,^{*a*} Guohai Xu,^{*b**} Zhengyi Zhang^{*c*} and Yabing He^{*a**}

^{*a*} Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: heyabing@zjnu.cn

^b Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China. E-mail: xugh308@gnnu.cn

^c Bruker (Beijing) Scientific Technology Co., Ltd., Beijing 100192, China

Fig. S1 The electronic photograph of the as-synthesized ZJNU-100.

Fig. S2 (a) The simulated (black) and experimental (red) PXRD patterns of **ZJNU-100**; (b) the PXRD patterns of **ZJNU-100** after immersion in aqueous HCl/NaOH solutions with pH ranging from 3 to 12 for 24 h.

Fig. S3 The TGA curve of ZJNU-100 under nitrogen atmosphere.

Fig. S4 Comparison of FTIR spectra of ZJNU-100 and its corresponding ligand H₆L.

 $S_{\text{BET}} = 1/(1.54192 \times 10^{-6} + 0.00225)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1933 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00206)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2113 \text{ m}^2 \text{ g}^{-1}$ BET constant $C = 1 + 0.00225/1.54192 \times 10^{-6} = 1460$

$$(p/p_o)_{n_m} = \frac{1}{\sqrt{C}+1} = 0.0255$$

Fig. S5 (a) The consistency, (b) BET surface area, and (c) Langmuir surface area plots for **ZJNU-100**.

Fig. S6 (a) N_2 isotherms at 77 K and (b) DFT pore size distributions of ZJNU-100 before and after immersion in water at room temperature for 24 h.

Fig. S7 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-100** with the fitted isotherms at 278 K, 288 K, and 298 K.

5.0

4.0

3.0

2.0

ppm

Τ

8.0

7.0

6.0

Fig. S8 ¹H and ¹³C NMR spectra.

MOFs	ZJNU-100
Empirical formula	$C_{297}H_{162}Cu_{24}O_{132}$
Formula weight	7367.22
λ (Å)	1.54178
Crystal system	Hexagonal
Space group	P6/mmm
	a = 63.7383(15) Å
	b = 63.7383(15) Å
Unit call dimensions	c = 25.3645(7) Å
Unit cen dimensions	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$
	$\gamma = 120^{\circ}$
$V(\text{\AA}^3)$	89240(5)
Ζ	6
$D_{\rm c} ({\rm g cm}^{-3})$	0.823
$\mu (\mathrm{mm}^{-1})$	1.333
<i>F</i> (000)	22176
θ range for data collection (°)	1.917 to 68.338
	$-44 \le h \le 76$
Limiting indices	$-76 \le k \le 59$
	$-30 \le l \le 26$
Reflections collected / unique	352872 / 29233
R _{int}	0.1101
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	29233 / 3472 / 1204
Goodness-of-fit on F^2	1.085
Final Pindices $[I > 2\pi(I)]$	$R_1 = 0.1174$
Final K matces $[1 > 20(1)]$	$wR_2 = 0.2795$
Dindiago (all data)	$R_1 = 0.1370$
	$wR_2 = 0.2881$
Largest diff. peak and hole (e ⁻ Å ⁻³)	2.338 and -1.904
CCDC	1877489

 Table S1 Crystal data and structure refinement for ZJNU-100.

MOFs	Metal ion	Ligand structure	S_{BET} (m ² g ⁻¹)	$V_{\rm p}$ (cm ³ g ⁻¹)	C_2H_2 uptake (cm ³ g ⁻¹ , STP)	CO_2 uptake (cm ³ g ⁻¹ , STP)	Ref.
Zn ₄ O(BHB)	Zn ²⁺	соон ноос соон ноос соон	156	NA	NA	35 (273 K, 1 atm)	1
SDU-1	Zn ²⁺	соон ноос + + +	779	0.353	NA NA		2, 3
NPC-5	Co ²⁺	соон соон ноос + снз ноос + снз ноос - соон	1140	0.496	NA	NA	2
UTSA-20	Cu ²⁺	соон ноос соон ноос соон	1156	0.63	150.3 (296 K, 1 atm)	82.4 (296 K, 1 atm)	4, 5
ZJNU-100	Cu ²⁺	соон соон ноос (H ₃) (CH ₃) ноос (CH ₃) ноос (CH ₃)	1933	0.754	149.1 (298 K, 1 atm)	83.1 (298 K, 1 atm)	This work
Cu-TDPAT	Cu ²⁺	HOOC COOH	1938	0.93	177.7 (298 K, 1 atm)	132 (298 K, 1 atm)	6, 7
Cu-TDPAH	Cu ²⁺	$\begin{array}{c} \begin{array}{c} \text{HOOC} \\ HO$	2171	0.91	155.7 (298 K, 1 atm)	116 (298 K, 1 atm)	8
MFM-132	Cu ²⁺		2466	1.06	NA	NA	9
SDU-8	Cu ²⁺		2516	1.02	NA	NA	10
SDU-7	Cu ²⁺		2713	1.10	NA	NA	10
GDMU-2	Cu ²⁺		2758	1.17	NA	74 (273 K, 1 bar)	11

Table S2 Summaries of gas adsorption properties and pore textural parameters ofsome reported MOFs based on triisophthalate ligands.

SDU-6	Cu ²⁺		2826	1.17	NA	NA	10
Cu-TPBTM	Cu ²⁺		3160	1.268	NA	NA	12
Cu ₃ (BTB ⁶⁻)	Cu ²⁺		3288	1.77	NA	NA	13
Cu ₃ (TATB ⁶⁻)	Cu ²⁺		3360	1.91	NA	NA	13
NTU-105 (NU-125) (NOTT-122)	Cu ²⁺	$\begin{array}{c} \begin{array}{c} \text{HOOC} \\ \text{HOOC} \\ \text{HOOC} \end{array} \\ \begin{array}{c} \text{HOOC} \end{array} \\ \end{array}$	3543	1.33	NA	187 (273 K, 1 atm)	14-16
HNUST-5	Cu ²⁺		3643	1.46	NA	56 (298 K, 1 bar)	17
NOTT-112	Cu ²⁺		3800	1.69	NA	NA	18
Cu-NTTA	Cu ²⁺	HOCC CCOCH HOCC CCCCH HOCC CCCH HOCC CCCH HOCC CCCH HOCC CCCH HOCC CCCH HOCC CCCH HOCC CCCH HOCC CCCCH HOCC CCCCH HOCC CCCCH HOCC CCCCH	3931	1.27	NA	65.5 (298 K, 800 Tor)	19
NOTT-119 (PCN-69)	Cu ²⁺		4118	2.35	NA	NA	20, 21
PMOF-2 (PCN-61)	Cu ²⁺		4180	NA	NA	NA	22, 23
PCN-66	Cu ²⁺		4600	1.63	NA	NA	22

PCN-68	Cu ²⁺	6033	2.13	NA	NA	22
NU-100 (PCN-610)	Cu ²⁺	6143	2.82	NA	NA	22, 24
NU-110	Cu ²⁺	7140	4.4	NA	NA	25

Guest	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-v}	E (kJ mol ⁻¹)	v	R^2
C_2H_2	11.66812	1.3048×10 ⁻⁶	24.392	0.85623	0.99973
CO ₂	14.38261	2.63295×10 ⁻⁷	23.353	1	0.99996
CH ₄	9.7708	1.1718×10 ⁻⁶	16.680	1	0.99998

Table S3 Langmuir-Freundlich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in **ZJNU-100**.

Reference

- Z. Chen, S. Xiang, T. Liao, Y. Yang, Y.-S. Chen, Y. Zhou, D. Zhao and B. Chen, *Cryst. Growth Des.*, 2010, 10, 2775-2779.
- 2. L. Li, S. Tang, X. Lv, M. Jiang, C. Wang and X. Zhao, *New J. Chem.*, 2013, **37**, 3662-3670.
- 3. X. Zhao, X. Wang, S. Wang, J. Dou, P. Cui, Z. Chen, D. Sun, X. Wang and D. Sun, *Cryst. Growth Des.*, 2012, **12**, 2736-2739.
- 4. Y. He, R. Krishna and B. Chen, *Energy Environ. Sci.*, 2012, **5**, 9107-9120
- Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O'Keeffe and B. Chen, *Angew. Chem. Int. Ed.*, 2011, **50**, 3178-3181.
- K. Liu, D. Ma, B. Li, Y. Li, K. Yao, Z. Zhang, Y. Han and Z. Shi, J. Mater. Chem. A, 2014, 2, 15823-15828.
- B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem, Y. J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng and J. Li, *Angew. Chem. Int. Ed.*, 2012, **51**, 1412-1415.
- K. Liu, B. Li, Y. Li, X. Li, F. Yang, G. Zeng, Y. Peng, Z. Zhang, G. Li, Z. Shi, S. Feng and D. Song, *Chem. Commun.*, 2014, **50**, 5031-5033.
- Y. Yan, D. I. Kolokolov, I. d. Silva, A. G. Stepanov, A. J. Blake, A. Dailly, P. Manuel, C. C. Tang, S. Yang and M. Schröder, *J. Am. Chem. Soc.*, 2017, **139**, 13349-13360.
- X. Zhao, D. Sun, S. Yuan, S. Feng, R. Cao, D. Yuan, S. Wang, J. Dou and D. Sun, *Inorg. Chem.*, 2012, **51**, 10350-10355.
- 11. J. Liu, G. Liu, C. Gu, W. Liu, J. Xu, B. Li and W. Wang, J. Mater. Chem. A, 2016, 4, 11630-11634.
- 12. B. Zheng, J. Bai, J. Duan, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2011, 133, 748-751.
- 13. B. Zheng, Z. Yang, J. Bai, Y. Li and S. Li, Chem. Commun., 2012, 48, 7025-7027.
- 14. X.-J. Wang, P.-Z. Li, Y. Chen, Q. Zhang, H. Zhang, X. X. Chan, R. Ganguly, Y. Li, J. Jiang and Y. Zhao, *Sci. Rep.*, 2013, **3**, 1149.
- 15. C. E. Wilmer, O. K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A. Sarjeant, R. Q. Snurr and J. T. Hupp, *Energy Environ. Sci.*, 2013, **6**, 1158-1163.
- Y. Yan, M. Suyetin, E. Bichoutskaia, A. J. Blake, D. R. Allan, S. A. Barnett and M. Schröder, *Chem. Sci.*, 2013, 4, 1731-1736.
- B. Zheng, H. Wang, Z. Wang, N. Ozaki, C. Hang, X. Luo, L. Huang, W. Zeng, M. Yang and J. Duan, *Chem. Commun.*, 2016, **52**, 12988-12991.
- Y. Yan, X. Lin, S. Yang, A. J. Blake, A. Dailly, N. R. Champness, P. Hubberstey and M. Schröder, *Chem. Commun.*, 2009, 1025-1027.
- 19. X. Guo, Z. Zhou, C. Chen, J. Bai, C. He and C. Duan, *ACS Appl. Mater. Interfaces*, 2016, **8**, 31746-31756.
- Y. Yan, S. Yang, A. J. Blake, W. Lewis, E. Poirier, S. A. Barnett, N. R. Champness and M. Schröder, *Chem. Commun.*, 2011, 47, 9995-9997.
- 21. D. Yuan, D. Zhao and H.-C. Zhou, *Inorg. Chem.*, 2011, **50**, 10528-10530.
- 22. D. Yuan, D. Zhao, D. Sun and H.-C. Zhou, Angew. Chem. Int. Ed., 2010, 49, 5357-5361.
- 23. S. Hong, M. Oh, M. Park, J. W. Yoon, J.-S. Chang and M. S. Lah, *Chem. Commun.*, 2009, 5397-5399.
- 24. O. K. Farha, A. Ö. Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T.

Nguyen, R. Q. Snurr and J. T. Hupp, *Nature Chem.*, 2010, **2**, 944-948.

- O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, 25. S. T. Nguyen, A. Ö. Yazaydın and J. T. Hupp, J. Am. Chem. Soc., 2012, 134, 15016-15021.