Electronic Supplementary Information

Charge-transfer complexes based on C_{2v}-symmetric benzo[ghi]perylene: comparison of their dynamic and electronic properties with those of D_{6h}-symmetric coronene

Yukihiro Yoshida,*ab Shunsuke Tango,c Kazuhide Isomura,c Yuto Nakamura,c Hideo Kishida,c Takashi Koretsune,de Masafumi Sakata,f Yoshiaki Nakano,ag Hideki Yamochiag and Gunzi Saitoh

a Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
b Faculty of Agriculture, Meijo University, Tempaku-ku, Nagoya 468-8502, Japan
c Department of Applied Physics, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
d Department of Physics, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
e JST, PRESTO, Saitama 332-0012, Japan
f KYOKUGEN, Center for Science and Technology under Extreme Conditions, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
g Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyoku, Kyoto 606-8501, Japan
h Toyota Physical and Chemical Research Institute, Nagakute 480-1192, Japan
Fig. S1 Infrared spectra of (bper)(TCNQ) (1; green) and (bper)$_3$(TCNQ) (3; blue) together with monoanionic TCNQ (red), neutral TCNQ (orange), and neutral bper (pink), measured in dispersed KBr pellets. The $\nu_{\text{C=C}}$ modes of 1 (1541 cm$^{-1}$) and 3 (1540 cm$^{-1}$) are comparable to that of neutral TCNQ (1543 cm$^{-1}$). Assuming that the charge state of TCNQ molecule is linearly correlated with the $\nu_{\text{C=C}}$ shift, $-(\omega_{\text{obs}} - \omega_0)/(\omega_1 - \omega_0)$, where ω_{obs}, ω_0, and ω_1 are the $\nu_{\text{C=C}}$ mode frequencies of a CT complex, a neutral TCNQ, and a monoanionic TCNQ, respectively, the charge states of the TCNQ molecules in 1 and 3 were estimated to be less than -0.1.
Fig. S2 Zig-zag π-stacking column of bper monocations in (bper)(GaCl$_4$), where green dotted lines show C–H···Cl hydrogen bonds between bper and GaCl$_4^-$ (H1···Cl12: 2.73 Å vs. sum of van der Waals radii: 2.95 Å2). Neighboring bper molecules within the column have a ring-over-bond overlap motif within a dimer (interplanar distance: 3.20 Å) and a ring-over-atom overlap motif between dimers (interplanar distance: 3.32 Å).
Fig. S3 Energy diagram for the frontier Kohn-Sham orbitals of the 1A_1 state in C_{2v}-symmetric neutral bper molecule calculated at the RB3LYP/6-31+G(d,p) level of theory. The 72th and 73th orbitals are the highest occupied and the lowest unoccupied orbitals, respectively. Selected orbitals are shown on the right side, where red and green surfaces are positive and negative isovalues, respectively.

References