A Supramolecular Hyperbranched Polymer with Multi-Responsiveness Constructed by Pillar[5]arene-Based Host–Guest Recognition and Its Application in the Breath Figure Method

Yuezhou Liu,† Yingyi Zhang,‡ Huangtianzhi Zhu,† Hu Wang,† Wei Tian*,‡ and Bingbing Shi*†

† Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
‡ Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, P. R. China.

*Corresponding Authors: (B. Shi) Email: bingbingshi@zju.edu.cn; Fax and Tel: +86-571-8795-3189; (W. Tian) E-mail: happytw_3000@163.com.
1. Synthesis and characterizations of compounds

Scheme S1. The synthetic route of compound A₂.

Figure S1. ¹H NMR spectrum (600 MHz, chloroform-d, room temperature) of A₂.

Figure S2. ¹³C NMR spectrum (150 MHz, chloroform-d, room temperature) of A₂.
Scheme S2. The synthetic route of B₃.

Figure S3. ¹H NMR spectrum (600 MHz, chloroform- d, room temperature) of 3.
Figure S4. 1H NMR spectrum (600 MHz, chloroform-d, room temperature) of 4.

Figure S5. 13C NMR spectrum (150 MHz, chloroform-d, room temperature) of 4.
Figure S6. 1H NMR spectrum (600 MHz, chloroform-d, room temperature) of 6.

Figure S7. 1H NMR spectrum (600 MHz, chloroform-d, room temperature) of B$_3$.
Figure S8. 13C NMR spectrum (150 MHz, chloroform-d, room temperature) of B$_3$.

2. NOESY NMR spectrum of A$_2$–B$_3$ complex in CDCl$_3$

Figure S9. 2D NOESY NMR spectrum (600 MHz, room temperature) in CDCl$_3$ of 7.5 mM A$_2$ and 5.0 mM B$_3$.
3. Representative 2D DOSY NMR spectra of A_2-B_3 complex

Figure S10. 2D DOSY NMR spectrum (600 MHz, CDCl$_3$, 298 K) of mixtures of 3:2 molar ratio of A_2, B_3 (1.00 mM A_2).

Figure S11. 2D DOSY NMR spectrum (600 MHz, CDCl$_3$, 298 K) of mixtures of 3:2 molar ratio of A_2, B_3 (2.00 mM A_2).
Figure S12. 2D DOSY NMR spectrum (600 MHz, CDCl₃, 298 K) of mixtures of 3:2 molar ratio of A₂, B₃ (5.00 mM A₂).

Figure S13. 2D DOSY NMR spectrum (600 MHz, CDCl₃, 298 K) of mixtures of 3:2 molar ratio of A₂, B₃ (10.0 mM A₂).
Figure S14. 2D DOSY NMR spectrum (600 MHz, CDCl₃, 298 K) of mixtures of 3:2 molar ratio of A₂, B₃ (20.0 mM A₂).

Figure S15. 2D DOSY NMR spectrum (600 MHz, CDCl₃, 298 K) of mixtures of 3:2 molar ratio of A₂, B₃ (30.0 mM A₂).
4. The temperature-variant NMR experiments of $A_2 \cdot B_3$ complex in CDCl$_3$

![NMR spectra](image)

Figure S16. 1H NMR spectra (600 MHz) of mixtures of 3:2 molar ratio of A_2, B_3 (5.00 mM A_2) in CDCl$_3$ at various temperature: (a) 328 K; (b) 323 K; (c) 318 K; (d) 313 K; (e) 308 K; (f) 303 K; (g) 298 K.
5. **Cyclic voltammetry curves and partial 1H NMR spectra of DMP5 and DMP5 with excess I_2**

Figure 17. (a) Cyclic voltammetry curves (0.1 V/s) of 1.0 mM A_2 in the solution of Tetrabutylammonium Hexafluorophosphate (0.10 mM in CHCl$_3$); (b) Partial 1H NMR spectra (600 MHz, CDCl$_3$, 298 K) of DMP5 (red line) and DMP5 with excess I_2 (blue line).