Supplementary Information

Improved Efficiency in Fullerene and Non-fullerene Polymer Solar Cells having an Interdigitated Interface with the Electron Transport Layer

Yu Yana,b, Wei Lia,b, Jinlong Caia,b, Mengxue Chena,b, Yuchao Maoa,b, Xiaolong Chena,b, Robert S. Gurneya,b, Dan Liua,b, Fei Huangc, Tao Wanga,b* \\
aSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China \\
bState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China \\
cInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China \\

*The corresponding author: twang@whut.edu.cn
Figure S1. SPM topography images of (a and d) pristine ITIC, and ITIC:PFN-OX (92.5:7.5 wt.%) blend film (b and e) before and (c and f) after CB rinsing. Image size of (a-c) is 2 μm×2 μm, and image size of (d-f) 5 μm×5 μm.

Figure S2. (a) Device PCE as a function of PFN-OX:ITIC ratio in the casting solution. (b) Device PCE as a function of thickness of the ITIC-templated PFN-OX ETL (with a fixed ratio of 7.5:92.5 wt.% in the casting solution).
Figure S3. (a) champion J-V curves, (b) corresponding EQE spectra of inverted PTB7-Th:ITIC non-fullerene polymer solar cells employing planar and ITIC-templated interdigitated PFN-OX ETLs.